Math 309 §2 Name SDLUT(ON§

Fall 2018
Exam 3

Directions: Do all problems (100 points total). You must show all steps and explain your reasoning to receive
full credit. No books, notes, or electronic devices are allowed.

1.(18 points) Let V and W be vector spaces. Complete the definitions as briefly as possible:

(a) Two n x n matrices A and B are similar if there is an invertible n x n matrix S such that:

B=SAS

(b) An n x n matrix Q is orthogonal if

—
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@ Q= ~\V\
(c) The orthogonal complement of a subspace S of R™ is defined by

st = { xe®R" \ g0 '\Jéeﬁ}

(d) In a vector space V with inner product ( ,),

e The norm of a vector x is defined by the formula ||x|| = \J <‘/ e V4

e {ej,eq,...,e,} is an orthonormal set if ...
Leyey =8y = g ey
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(e) To compute the correlation coefficient between to data vectors x,y € R™, one first the deviation
vectors xp and yp (by subtracting the means X,¥). Then, in terms of xp and yp,

e The formula for the correlation coefficientisr = K'D' i ®

e Geometrically, ris ...Cos @ ohew o QV\SLL | A X cond >/[) ,

)"

2. (14 points) Circle @ for TRUE, circle @ for FALSE.

(a) If A and B are similar matrices, then det A = det B. @ F
(b) If A and B are similar matrices, then A? is similar to B2. @F
(c) For an m xn matrix A, the null space N(A) and the range R(A) are orthogonal subspaces of R™. T@

(d) If (,) is an inner product on a vector space V, then (x,y) = (y,x) for all x,y € V. (T)F



(e) If (,) is an inner product on a vector space V, then (x,x) =0 only if x =0. @ F

(f) Each vector space V has a unique inner product. T F)

(g) Every finite-dimensional inner product space has an orthonormal basis. @ F

3. (12 points) Let 6 denote the angle between the vectors u = (1,1,2,2)T and
v = (-2,1,2,0)T in R%. Let p be the orthogonal projection of u onto v.

Find:
uv = [-(2) L L1+ 22 v20 = 3

cosf = -——-—U‘“V_’ = 3 — ‘\"’
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4.(10 points) Consider the vector space C[0, 1] with inner product defined by (f, g) = fol f(z)g(z) dz.

(a) Show that 1 and 2z — 1 are orthogonal:

\ i
<4, %) = S Lo @x-V) dx = '><1~x\ = l-1= o

©

(b) Calculate [|2z — 1]

\
\\Qy—\“li <ax-\,9\x—h = gc (&2"5(--\3 cL)(
= D ue -l
O \
= AP -axx
=(3-2+1) -0

Y ‘
- Answer: |2z - 1| = —F
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5.(10 points) Let V be a vector space with inner product {, , ). Prove that
I +yl* +lx = ylI* = 2(Ixl*+llyl*)  vxyeV.

Use two-column format, giving a reason for each step in terms of properties of the inner product.
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6.(20 points) Use the Gram-Schmidt process to find an orthonormal basis of of R? starting from the vectors

) - ()

Number your steps and show your work.
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7.(16 points) Use the Least Squares Procedure to find the line y = az + b in the plane that best fits the
data points {(—2,-2), (-1,0), (1,1), (2,3)}.

(a) What is the overdetermined linear system to be solved?

’R'\e‘%e ”2‘5 ;\k(\x (-2 ,"'_ZB = DoAY =]
Faew L0 = —a+b =0 LS";S%LW .
‘:‘:\'\P* (\l ‘\ = G + E = \
'\'V\r\.n (2,'53 = L v b= o

(b) This system has the form Ax = b for what matrix A and vector b?
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(d) What is the equation of the line of best fit?
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