\ Sol_\) TIONS \ Sept. 21, 2018
Name U 7 Prof. T. Parker

Math 309 §2 — Exam 1

Do all 7 problems. You must show your work to receive credit. No books, notes, or electronic devices.

z+y—w =0
1. (21 points) Consider the system 3z+2y—2z =1
dz+dy+z—5w =-1

(a) Write the system as an augmented matrix and find the reduced row echelon form. Label your

row operations.
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(b) Write down the solution set S in terms of free variables. Use set notation.

X =k = X: [ 1+
4+ d .:—\ = \6 = ~1=d
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2.(18 points) Write (T) if TRUE or (F) if FALSE.

(a) For a homogeneous linear system Ax = 0, the ber of free variables in the solution set is
equal to the number of non-pivot columns. @

(b) If the augmented matrix of a linear system has only Os in its bottom row, then the system
is inconsistent.

(c) The product AB of matrices is defined only if A and B are both n X n square matrices. @

(d) For matrices A and B, AB = BA whenever béides are defined.



(e) For matrices A, B and C, (AB)C = A(BC) wheneve

(f) (AB)T = AT BT for all n x n matrices A and B.

©

r both sides are defined. Q[

(g) If matrices A and B are row-equivalent, then A = EB for some elementary matrix E. Q{

(h) The zy plane is a vector subspace of R3. @

(i) If S is a subspace of a vector space V and x,y,z € S, then 2+ 8y —3z € S. CD

3.(12 points) Complete the definition or statement. Make your wording precise.

(a) The inverse of an n x n matrix A is an n x n matrix B such that ...

A(B = 1\,\ and (B/A\ :Iv\

(b) The null space of an n x n matrix A is

N4 = { XeR" \

Ax =

5 )

(¢) Theorem. For an n x n matriz A, the following are equivalent:

(a) A is invertible.
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(a) The linear system Ax = 0 has ‘2 soluton ex Ce?Jr =D
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(c) A is row equivalent to

(d) The matrix (__13 Z) is non-singular for every value of o except a =

_'-1/3

Reajon Jnvedkble  onless -4 -« (“3\ =0 = Y+3a=o =2 M:'L’/B.

4.(9 points) Complete the proof by filling in the blanks. The azioms A1 — A8 are listed at the

end of the ezam.

Cancellation Law: Ifv+x=w4xthenv=w.

Proof: v =v+0
= VA (xs X))
= (v+x)+ —x
(SER'S) ¥EX)
W+ (x*~x)

-9

=W

AS

A2

given

AH

AD

A%

_AT



1 1 1
5.(15 points) Find the inverse of B = (—1 2 —1). Do not label row operations.
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6.(10 points) A 2 x 2 matrix A = <z Z) is called symmetric if b = c.
Let V' be the vector space of all 2 x 2 matrices, and S the set of all symmetric 2 x 2 matrices
Prove that S is a subspace of V. Use sentences to make your reasoning clear
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7.(15 points) Suppose that a matrix X satisfies XA + B = A for some matrices A and B.
(a) Algebraically solve for X in terms of A and B.

XA AR = A
= XA = A—Q \
e XA-A' = A-B)A
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The axioms of a vector space V: for all x,y,z € V and o, 8 € R,

Al. x4+y=y+x A5. a(x+y)=ax+ay
A2. (x+y)+z=y+ (x+2) A6. (a+pf)x=ax+px
A3. Javector0e Vst. x+0=xforallxeV. AT. a(fx) = (af)x

A4. For each x € V, there is a vector —x € V
such that x + (—x) =0 A8. 1-x=x.



