Local Max/Min Values	Absolute (Global) Max/Min Values
 A critical point of f(x, y) is a point (x, y) where either ∇f(x, y) = ⟨0,0⟩ or where one of the partial derivatives doesn't exist (meaning ∇f(x, y) is undefined). Local maximum and minimum values occur at critical points. The Hessian Determinant is D(x, y) = f_{xx}f_{yy} - f²_{xy} The Second Derivative Test says that if ∇f(x, y) = ⟨0,0⟩, then you can use the value of D(x, y) to tell if it's a local maximum, local minimum, or neither: If D(x, y) = 0, then the test does not apply. If D(x, y) < 0, then (x, y) is neither a maximum nor a minimum. If D(x, y) > 0, then check whether f_{xx}(x, y) is positive or negative. Positive means local maximum. 	 The Extreme Value Theorem says that if R is a closed and bounded region, and if f(x, y) is continuous on R, then f(x, y) has a global/absolute maximum and a global/absolute minimum on R. The global maximum and minimum values occur either at critical points in R or on the boundary of R.
Double Integrals	Computing Double Integrals
• If R is a region in the x,y plane, then $\iint\limits_R f(x,y) dA$	 Fubini's Theorem says that the double integral ∫∫ f(x,y)dA over the rectangle a ≤ x ≤ b, c ≤ y ≤ d can be computed using either of the "iterated integrals":

 $\int_{c}^{d} \int_{a}^{b} f(x, y) dx \, dy \quad \text{or} \quad \int_{a}^{b} \int_{c}^{d} f(x, y) dy \, dx$

• More generally, if R is not a rectangle, but instead is the region between two curves y = g(x)and y = h(x), then the iterated integral is:

$$\int_a^b \int_{g(x)}^{h(x)} f(x,y) dy \, dx$$

represents the volume underneath the graph z =

f(x, y) which lies above the region R.