Definitions

For a function of two variables f(x,y), and a unit vector $\vec{u} = \langle u_1, u_2 \rangle$:

• The directional derivative of f at (a, b) in the direction \vec{u} is

$$D_{\vec{u}}f(a,b) = \lim_{h \to 0} \frac{f(a+u_1h, b+u_2h) - f(a,b)}{h}$$

• The **gradient** of f is

$$\nabla f = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right\rangle$$

Specifically, at the point (a, b):

$$\nabla f(a,b) = \langle f_x(a,b), f_y(a,b) \rangle$$

If f(x, y, z) is a function of three variables, then

$$\nabla f = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right\rangle$$

Important Formulas

• The directional derivative of f in the direction of the unit vector \vec{u} is given by the formula

$$D_{\vec{u}}f(a,b) = \vec{u} \cdot \nabla f(a,b)$$

• The chain rule can be re-phrased in terms of the gradient vector. If $\vec{r}(t) = \langle x(t), y(t) \rangle$, and f = f(x(t), y(t)), then

$$\frac{df}{dt} = \vec{r}'(t) \cdot \nabla f(x(t), y(t))$$

Maximum Rate of Change

- The function f increases the fastest in the direction of ∇f , with the maximum rate of increase being $|\nabla f|$.
- Likewise, the function f decreases the fastest in the direction of $-\nabla f$.

Level Sets

- If f(x,y) is a function of two variables, then the level sets f(x,y) = c are curves in \mathbb{R}^2 . Then at a point on the curve, ∇f is orthogonal to the curve (meaning orthogonal to the tangent line).
- If f(x, y, z) is a function of three variables, then the level sets f(x, y, z) = c are surfaces in \mathbb{R}^3 . Then at a point on the surface, ∇f is orthogonal to the surface (meaning orthogonal to the tangent plane).