Definitions
For a function of two variables $f(x, y)$, and a
unit vector $\vec{u}=\left\langle u_{1}, u_{2}\right\rangle$:

- The directional derivative of f at (a, b) in the
direction \vec{u} is

$$
D_{\vec{u}} f(a, b)=\lim _{h \rightarrow 0} \frac{f\left(a+u_{1} h, b+u_{2} h\right)-f(a, b)}{h}
$$

- The gradient of f is

$$
\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle
$$

Specifically, at the point (a, b) :

$$
\nabla f(a, b)=\left\langle f_{x}(a, b), f_{y}(a, b)\right\rangle
$$

If $f(x, y, z)$ is a function of three variables, then
$\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle$

Maximum Rate of Change

- The function f increases the fastest in the direction of ∇f, with the maximum rate of increase being $|\nabla f|$.
- Likewise, the function f decreases the fastest in the direction of $-\nabla f$.

Important Formulas

- The directional derivative of f in the direction of the unit vector \vec{u} is given by the formula

$$
D_{\vec{u}} f(a, b)=\vec{u} \cdot \nabla f(a, b)
$$

- The chain rule can be re-phrased in terms of the gradient vector. If $\vec{r}(t)=\langle x(t), y(t)\rangle$, and $f=$ $f(x(t), y(t))$, then

$$
\frac{d f}{d t}=\vec{r}^{\prime}(t) \cdot \nabla f(x(t), y(t))
$$

Level Sets

- If $f(x, y)$ is a function of two variables, then the level sets $f(x, y)=c$ are curves in \mathbb{R}^{2}. Then at a point on the curve, ∇f is orthogonal to the curve (meaning orthogonal to the tangent line).
- If $f(x, y, z)$ is a function of three variables, then the level sets $f(x, y, z)=c$ are surfaces in \mathbb{R}^{3}. Then at a point on the surface, ∇f is orthogonal to the surface (meaning orthogonal to the tangent plane).

