Tangent Planes

For a function of two variables $f(x, y)$:

- The tangent plane to the graph $z=f(x, y)$ at the point (a, b) has normal vector

$$
\vec{n}=\left\langle f_{x}(a, b), f_{y}(a, b),-1\right\rangle
$$

This is obtained as the cross product

$$
\left\langle 0,1, f_{y}(a, b)\right\rangle \times\left\langle 1,0, f_{x}(a, b)\right\rangle
$$

- The equation for the tangent plane is then
$f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)-(z-f(a, b))=0$
or

$$
z-f(a, b)=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

Linearization

- The linearization of $f(x, y)$ is the linear function whose graph is the tangent plane to the graph of f. That is, the linearization at (a, b) is the function
$L(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)$
- You can approximate $f(x, y)$ when (x, y) is close to (a, b) using L instead of the original f.

Differentials

- The differential of f is

$$
d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y
$$

The Chain Rule

- If $z=f(x, y)$, and $x=x(t)$ and $y=y(t)$, then

$$
z^{\prime}(t)=f_{x}(x(t), y(t)) \cdot x^{\prime}(t)+f_{y}(x(t), y(t)) \cdot y^{\prime}(t)
$$

or

$$
\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
$$

- If $z=f(x, y)$, and x and y depend on two variables s and t (that is, $x=x(t, s)$ and $y=y(t, s)$), then

$$
\begin{aligned}
& \frac{\partial z}{\partial t}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t} \\
& \quad \text { and } \\
& \frac{\partial z}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s}
\end{aligned}
$$

