Tangent Planes	Linearization
For a function of two variables $f(x, y)$:	
• The tangent plane to the graph $z = f(x, y)$ at the point (a, b) has normal vector	• The linearization of $f(x, y)$ is the linear function whose graph is the tangent plane to the graph of f . That is, the linearization at (a, b) is the function
$\vec{n} = \langle f_x(a,b), f_y(a,b), -1 \rangle$	
This is obtained as the cross product	$L(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$
$\langle 0, 1, f_y(a, b) angle imes \langle 1, 0, f_x(a, b) angle$	• You can approximate $f(x, y)$ when (x, y) is close
• The equation for the tangent plane is then	to (a, b) using L instead of the original f .
$f_x(a,b)(x-a) + f_y(a,b)(y-b) - (z - f(a,b)) = 0$	
or	
$z - f(a, b) = f_x(a, b)(x - a) + f_y(a, b)(y - b)$	
Differentials	The Chain Rule
• The differential of <i>f</i> is	• If $z = f(x, y)$, and $x = x(t)$ and $y = y(t)$, then
$df = rac{\partial f}{\partial x}dx + rac{\partial f}{\partial y}dy$	$z'(t) = f_x(x(t), y(t)) \cdot x'(t) + f_y(x(t), y(t)) \cdot y'(t)$
	or
	$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$
	• If $z = f(x, y)$, and x and y depend on two variables s and t (that is, $x = x(t, s)$ and $y = y(t, s)$),
	then $\frac{\partial z}{\partial t} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial t}$
	and
	$\frac{\partial z}{\partial s} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial s}$