Level Curves

For a function $f(x, y)$:

- A "level set" (or "level curve") is the solution set of an equation $f(x, y)=c$, where c is some constant.
- A "contour plot" is a picture (in the domain) consisting of multiple level curves of f.

Partial Derivatives

Let $f(x, y)$ be a function of two variables, and (a, b) a point in the domain of f.

- $\frac{\partial f}{\partial x}(a, b)=f_{x}(a, b)=\lim _{h \rightarrow 0} \frac{f(a+h, b)-f(a, b)}{h}$
- $\frac{\partial f}{\partial y}(a, b)=f_{y}(a, b)=\lim _{h \rightarrow 0} \frac{f(a, b+h)-f(a, b)}{h}$

In practice, to compute the partial derivative with respect to some variable, treat all other variables as constants, and take the usual derivative.

Limits

- The statement

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L
$$

means that $f(x, y)$ is close to L as long as (x, y) is close enough to (a, b).

- The limit of $f(x, y)$ as (x, y) approaches (a, b) only exists if the limit is independent of the path approaching the point (a, b).
- The function $f(x, y)$ is "continuous" at (a, b) if

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)
$$

Second Partial Derivatives

- $f_{x x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)$
- $f_{x y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)$
- Similarly for $f_{y y}$ and $f_{y x} \ldots$
- Second partial derivatives do not depend on the order. That is, $f_{x y}=f_{y x}$.

