Derivatives of Vector Functions

For a curve $\vec{r}(t)=\langle x(t), y(t), z(t)\rangle$:

- The derivative is $\vec{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle$.
- $\vec{r}^{\prime}(c)$ is tangent to the curve at the point $\vec{r}(c)$.
- The unit tangent vector is the normalization:

$$
\vec{T}(c)=\frac{\vec{r}(c)}{|\vec{r}(c)|}
$$

- The tangent line to the curve at the point $\vec{r}(c)$ is
$\vec{L}(t)=\vec{r}(c)+t \vec{r}^{\prime}(c)$

Physics

If we denote position $\vec{r}(t)$, velocity $\vec{v}(t)$, and acceleration $\vec{a}(t)$:

- $\vec{v}(t)=\vec{r}^{\prime}(t)$
- $\vec{a}(t)=\vec{v}^{\prime}(t)=\vec{r}^{\prime \prime}(t)$

Alternatively:

- $\vec{r}(t)=\int \vec{v}(t) d t$
- $\vec{v}(t)=\int \vec{a}(t) d t$

Integrals of Vector Functions

For a curve $\vec{r}(t)=\langle x(t), y(t), z(t)\rangle$:

- The indefinite integral (antiderivative) is

$$
\int \vec{r}(t) d t=\left\langle\int x(t) d t, \int y(t) d t, \int z(t) d t\right\rangle
$$

- The definite integral from $t=a$ to $t=b$ is

$$
\int_{a}^{b} \vec{r}(t) d t=\left\langle\int_{a}^{b} x(t) d t, \int_{a}^{b} y(t) d t, \int_{a}^{b} z(t) d t\right\rangle
$$

Arc Length

- The length of a parametric curve $\vec{r}(t)$ from $t=a$ to $t=b$ is given by

$$
\int_{a}^{b}\left|\vec{r}^{\prime}(t)\right| d t
$$

or

$$
\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t
$$

- The arc-length function (starting at $t=c$) is given by

$$
s(t)=\int_{c}^{t}\left|\vec{r}^{\prime}(u)\right| d u
$$

