The Cross Product

- For vectors $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, their cross product is

$$
\begin{aligned}
\vec{a} \times \vec{b} & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| \\
& =\left|\begin{array}{cc}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \vec{i}-\left|\begin{array}{cc}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \vec{j}+\left|\begin{array}{cc}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \vec{k} \\
& =\left\langle a_{2} b_{3}-b_{2} a_{3}, a_{3} b_{1}-b_{3} a_{1}, a_{1} b_{2}-b_{1} a_{2}\right\rangle
\end{aligned}
$$

- $\vec{a} \times \vec{b}$ is always orthogonal (perpendicular) to both \vec{a} and \vec{b}.
- $\vec{i} \times \vec{j}=\vec{k}, \vec{j} \times \vec{k}=\vec{i}$, and $\vec{k} \times \vec{i}=\vec{j}$
- Geometrically, the cross product $\vec{a} \times \vec{b}$ follows the "right-hand rule". To visualize, if you are looking from the tip of the arrow $\vec{a} \times \vec{b}$, then you should have to rotate \vec{a} counter-clockwise to get to \vec{b}.

Area Formulas

- The norm of the cross product $\vec{a} \times \vec{b}$ is the number $|\vec{a}||\vec{b}| \sin (\theta)$, where θ is the angle between \vec{a} and \vec{b} (as in the picture)
- $|\vec{a}||\vec{b}| \sin (\theta)$ is also the area of a parallelogram with side lengths $|\vec{a}|$ and $|\vec{b}|$ which make an angle θ with each other.

- $\frac{1}{2}|\vec{a}||\vec{b}| \sin (\theta)$ is also the area of a triangle with sides of length $|\vec{a}|$ and $|\vec{b}|$ which meet at an angle of θ. (This is just half of the above parallelogram)

Lines The line in \mathbb{R}^{3} which goes through the point $\vec{r}_{0}=\langle a, b, c\rangle$ and in the direction $\vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ is given by the parameterization

$$
\vec{r}(t)=\vec{r}_{0}+t \vec{v}=\left\langle a+v_{1} t, b+v_{2} t, c+v_{3} t\right\rangle
$$

Planes

The points $\langle x, y, z\rangle$ on the plane containing the point $\vec{P}=\langle a, b, c\rangle$ with normal vector $\vec{n}=\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ satisfy the equation:

$$
n_{1}(x-a)+n_{2}(y-b)+n_{3}(z-c)=0
$$

