Divergence

- The divergence of a vector field $\vec{F}=\langle P, Q, R\rangle$ is

$$
\operatorname{div}(\vec{F})=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}
$$

- This is often written as $\operatorname{div}(\vec{F})=\nabla \cdot \vec{F}$.

Curl

- The curl of a vector field $\vec{F}=\langle P, Q, R\rangle$ is

$$
\operatorname{curl}(\vec{F})=\left\langle\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right\rangle
$$

- This is often written as $\operatorname{curl}(\vec{F})=\nabla \times \vec{F}$.
- If \vec{F} is conservative, then $\nabla \times \vec{F}=\overrightarrow{0}$. In other words, for a function f, we have

$$
\nabla \times(\nabla f)=\overrightarrow{0}
$$

Surface Area of Graphs

- The surface area of a graph $z=f(x, y)$ which lies over the region D in the x, y plane is

$$
\text { Area }=\iint_{D} \sqrt{1+f_{x}^{2}+f_{y}^{2}} d A
$$

Surface Area for Parametric Surfaces

For the following, consider a parameterized surface

$$
\vec{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle
$$

- Define the vectors \vec{r}_{u} and \vec{r}_{v} to be

$$
\begin{aligned}
\vec{r}_{u} & =\left\langle\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right\rangle \\
\vec{r}_{v} & =\left\langle\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v}\right\rangle
\end{aligned}
$$

- The surface area of the region described by (u, v) in some region D of the u, v plane is

$$
\text { Area }=\iint_{D}\left|\vec{r}_{u} \times \vec{r}_{v}\right| d A
$$

