Divergence • The divergence of a vector field $\vec{F} = \langle P, Q, R \rangle$ is $\operatorname{div}(\vec{F}) = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$ • This is often written as $\operatorname{div}(\vec{F}) = \nabla \cdot \vec{F}$.	 Curl The curl of a vector field \$\vec{F}\$ = \$\langle P, Q, R\$\rangle\$ is curl(\$\vec{F}\$) = \$\langle\$ \$\frac{\partial R}{\partial y}\$ - \$\frac{\partial Q}{\partial z}\$, \$\frac{\partial P}{\partial z}\$ - \$\frac{\partial R}{\partial x}\$, \$\frac{\partial Q}{\partial x}\$ - \$\frac{\partial P}{\partial y}\$ \rangle\$ This is often written as curl(\$\vec{F}\$) = \$\nabla\$ × \$\vec{F}\$. If \$\vec{F}\$ is conservative, then \$\nabla\$ × \$\vec{F}\$ = \$\vec{0}\$. In other words, for a function \$f\$, we have \$\nabla\$ × \$\langle\$ \nabla\$ = \$\vec{0}\$ \$\vec{1}\$ = \$\vec{0}\$
Surface Area of Graphs • The surface area of a graph $z = f(x, y)$ which lies over the region D in the x, y plane is $Area = \iint_D \sqrt{1 + f_x^2 + f_y^2} dA$	Surface Area for Parametric Surfaces For the following, consider a parameterized sur- face $\vec{r}(u,v) = \langle x(u,v), y(u,v), z(u,v) \rangle$ • Define the vectors \vec{r}_u and \vec{r}_v to be $\vec{r}_u = \left\langle \frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u} \right\rangle$ $\vec{r}_v = \left\langle \frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v} \right\rangle$ • The surface area of the region described by (u,v) in some region D of the u, v plane is $\operatorname{Area} = \iint_D \vec{r}_u \times \vec{r}_v \ dA$