Area, Density, and Mass	Double Integrals in Polar Coordinates
 For a region D in the x, y plane, ∬_D dA gives the area of D. If ρ(x, y) is the density (mass per area) on a region D, then ∬_D ρ(x, y) dA gives the mass of D. 	• The integral $\iint_{D} f(x, y) dA$, written in polar co- ordinates, is given by $\iint_{\widetilde{D}} f(r\cos(\theta), r\sin(\theta)) r dr d\theta$ where \widetilde{D} is the region D expressed in polar co- ordinates.
Triple Integrals	Volume, Density, and Mass
 Fubini's Theorem says that if f(x, y, z) is continuous on the rectangle E, given by a ≤ x ≤ b, c ≤ y ≤ d, g ≤ z ≤ h, then the triple integral ∫∫∫ f(x, y, z) dV can be computed by an "iterated integral" of the form ∫∫a ∫_c d ∫a f(x, y, z) dx dy dz There are six possible re-orderings of the three iterated integrals, and they are all equal. If E is the space between two surfaces z = g(x, y) and z = h(x, y), and if D is the shadow/projection of E onto the x, y plane, then ∬∫ f(x, y, z)dV = ∬∫_{g(x,y)} f(x, y, z)dzdA 	 For a region E in 3-dimensional space, ∬_E dV gives the volume of E. If ρ(x, y, z) is the density (mass per volume) on a region E, then ∬∫_E ρ(x, y, z) dV gives the mass of E.