## Area, Density, and Mass

- For a region $D$ in the $x, y$ plane, $\iint_{D} d A$ gives the area of $D$.
- If $\rho(x, y)$ is the density (mass per area) on a region $D$, then $\iint_{D} \rho(x, y) d A$ gives the mass of $D$.


## Triple Integrals

- Fubini's Theorem says that if $f(x, y, z)$ is continuous on the rectangle $E$, given by $a \leq x \leq b$, $c \leq y \leq d, g \leq z \leq h$, then the triple integral $\iiint_{E} f(x, y, z) d V$ can be computed by an "iterated integral" of the form

$$
\int_{g}^{h} \int_{c}^{d} \int_{a}^{b} f(x, y, z) d x d y d z
$$

- There are six possible re-orderings of the three iterated integrals, and they are all equal.
- If $E$ is the space between two surfaces $z=$ $g(x, y)$ and $z=h(x, y)$, and if $D$ is the shadow/projection of $E$ onto the $x, y$ plane, then

$$
\iiint_{E} f(x, y, z) d V=\iint_{D} \int_{g(x, y)}^{h(x, y)} f(x, y, z) d z d A
$$

## Double Integrals in Polar Coordinates

- The integral $\iint_{D} f(x, y) d A$, written in polar coordinates, is given by

$$
\iint_{\widetilde{D}} f(r \cos (\theta), r \sin (\theta)) r d r d \theta
$$

where $\widetilde{D}$ is the region $D$ expressed in polar coordinates.

## Volume, Density, and Mass

- For a region $E$ in 3-dimensional space, $\iiint_{E} d V$ gives the volume of $E$.
- If $\rho(x, y, z)$ is the density (mass per volume) on a region $E$, then $\iiint_{E} \rho(x, y, z) d V$ gives the mass of $E$.

