Name： \qquad

Clear your desk of everything excepts pens，pencils and erasers．
If you have a question，please raise your hand．

1．（2 points）Match each vector field $\vec{F}(x, y)$ with its picture below．
（D）$\vec{F}(x, y)=\langle x,-y\rangle$
（B）$\vec{F}(x, y)=\left\langle e^{x}, 0\right\rangle$

2．（2 points）Match each function $f(x, y)$ with the picture of its gradient vector field，$\nabla f(x, y)$ ．
（A）$\quad f(x, y)=x+2 y$
（C）$\quad f(x, y)=x^{2}-y$

1r1aratar
『アフアブアアアア
なアプナ」ア
な入入入入入1

F \％k	$\cdots \rightarrow$
\lll	$x^{*} y \gg$
く $\downarrow \downarrow \downarrow$	\downarrow
$\measuredangle \downarrow \downarrow \downarrow$	$\downarrow \downarrow \downarrow\rangle$

3. (2 points) Compute the line integral $\int_{C} f(x, y) d s$, where $f(x, y)=x y$, and C is the arc of the unit circle from $(1,0)$ to $(0,1)$, traversed counter-clockwise.

Solution: The curve C can be parameterized by $\vec{r}(t)=\langle\cos (t), \sin (t)\rangle$ for $0 \leq t \leq \frac{\pi}{2}$. Then $\vec{r}^{\prime}(t)=$ $\langle-\sin (t), \cos (t)\rangle$. So the line integral becomes:

$$
\begin{aligned}
\int_{C} x y d s & =\int_{0}^{\pi / 2} \cos (t) \sin (t) \sqrt{\sin ^{2}(t)+\cos ^{2}(t)} d t \\
& =\int_{0}^{\pi / 2} \cos (t) \sin (t) d t \\
& =\frac{1}{2}\left[\sin ^{2}(t)\right]_{0}^{\pi / 2} \\
& =\frac{1}{2}
\end{aligned}
$$

