Name: \qquad

1. Consider the pictured region, which is inside the sphere $x^{2}+y^{2}+z^{2}=4$, above the x, y-plane, and under the cone $z=\sqrt{x^{2}+y^{2}}$.

(a) (2 points) Compute the volume of this region using a triple integral in spherical coordinates.

Solution:

$$
\begin{aligned}
\iiint_{E} d V & =\int_{\pi / 4}^{\pi / 2} \int_{0}^{2} \int_{0}^{2 \pi} \rho^{2} \sin (\phi) d \theta d \rho d \phi \\
& =2 \pi \int_{\pi / 4}^{\pi / 2} \int_{0}^{2} \rho^{2} \sin (\phi) d \rho d \phi \\
& =\frac{16 \pi}{3} \int_{\pi / 4}^{\pi / 2} \sin (\phi) d \phi \\
& =-\frac{16 \pi}{3}[\cos (\phi)]_{\pi / 4}^{\pi / 2} \\
& =\frac{16 \pi}{3}[\cos (\phi)]_{\pi / 2}^{\pi / 4} \\
& =\frac{16 \pi}{3 \sqrt{2}}
\end{aligned}
$$

(b) (2 points) Compute the volume of the same region from part (a), but using a triple integral in cylindrical coordinates.

(Hint: You will need to split it into two integrals)

Solution: In cylindrical coordinates, the equation for the sphere is $z=\sqrt{4-r^{2}}$, and the equation for the cone is $z=r$. So the two surfaces meet when $r=\sqrt{4-r^{2}}$. Solve this to get $r=\sqrt{2}$. So when $0 \leq r \leq \sqrt{2}$, the top of the region is the cone, and when $\sqrt{2} \leq r \leq 2$, the top of the region is the sphere. So we split into two integrals:

$$
\begin{aligned}
\iiint_{E} d V & =\int_{0}^{\sqrt{2}} \int_{0}^{2 \pi} \int_{0}^{r} r d z d \theta d r+\int_{\sqrt{2}}^{2} \int_{0}^{2 \pi} \int_{0}^{\sqrt{4-r^{2}}} r d z d \theta d r \\
& =\int_{0}^{\sqrt{2}} \int_{0}^{2 \pi} r^{2} d \theta d r+\int_{\sqrt{2}}^{2} \int_{0}^{2 \pi} r \sqrt{4-r^{2}} d \theta d r \\
& =2 \pi\left(\int_{0}^{\sqrt{2}} r^{2} d r+\int_{\sqrt{2}}^{2} r \sqrt{4-r^{2}} d r\right) \\
& =2 \pi\left(\frac{1}{3}\left[r^{3}\right]_{0}^{\sqrt{2}}-\frac{1}{3}\left[\left(4-r^{2}\right)^{3 / 2}\right]_{\sqrt{2}}^{2}\right) \\
& =\frac{2 \pi}{3}(2 \sqrt{2}+2 \sqrt{2}) \\
& =\frac{8 \sqrt{2} \pi}{3}
\end{aligned}
$$

