Name:

\qquad

Clear your desk of everything excepts pens, pencils and erasers.
If you have a question, please raise your hand.

1. (2 points) Write the point $(x, y, z)=(\sqrt{3}, 1,1)$ in cylindrical coordinates (r, θ, z).

Solution: The z-coordinate stays the same. So we just need to convert $(\sqrt{3}, 1)$ into polar coordinates. The length of this vector is $\sqrt{3+1}=2$, so $r=2$. Since $x=r \cos (\theta)$ and $y=r \sin (\theta)$, this means that $\cos (\theta)=\frac{\sqrt{3}}{2}$ and $\sin (\theta)=\frac{1}{2}$, and so $\theta=\frac{\pi}{6}$.
2. (2 points) Write the point $(x, y, z)=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}, 1\right)$ in spherical coordinates (ρ, θ, ϕ).

Solution: The length of the vector (x, y, z) is $\rho=\sqrt{\frac{1}{4}+\frac{3}{4}+1}=\sqrt{2}$. Forgetting the z-coordinate, the projection to the x, y-plane is $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$, and so $\theta=\frac{\pi}{3}$. Finall,y ϕ is the angle between the vectors $\left\langle\frac{1}{2}, \frac{\sqrt{3}}{2}, 1\right\rangle$ and $\langle 0,0,1\rangle$. The dot product of these vectors is 1 , so the angle is $\phi=\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)=\frac{\pi}{4}$.
3. (3 points) Use a triple integral in cylindrical coordinates to compute the volume of the region between the two paraboloids $z=x^{2}+y^{2}$ and $z=2-\left(x^{2}+y^{2}\right)$.

Solution: The equations of the two surfaces in cylindrical coordinates are $z=r^{2}$ and $z=2-r^{2}$. Setting them equal, we see that they intersect when $r=1$ and $z=1$. So the volume is given by

$$
\begin{aligned}
\iiint_{E} d x d y d z & =\int_{0}^{1} \int_{0}^{2 \pi} \int_{r^{2}}^{2-r^{2}} r d z d \theta d r \\
& =\int_{0}^{1} \int_{0}^{2 \pi} r\left(2-r^{2}-r^{2}\right) d \theta d r \\
& =2 \int_{0}^{1} \int_{0}^{2 \pi} r\left(1-r^{2}\right) d \theta d r \\
& =4 \pi \int_{0}^{1}\left(r-r^{3}\right) d r \\
& =\pi
\end{aligned}
$$

