Name: _____

Clear your desk of everything excepts pens, pencils and erasers. If you have a question, please raise your hand.

1. (2 points) Write the point $(x, y, z) = (\sqrt{3}, 1, 1)$ in cylindrical coordinates (r, θ, z) .

Solution: The *z*-coordinate stays the same. So we just need to convert $(\sqrt{3}, 1)$ into polar coordinates. The length of this vector is $\sqrt{3+1} = 2$, so r = 2. Since $x = r\cos(\theta)$ and $y = r\sin(\theta)$, this means that $\cos(\theta) = \frac{\sqrt{3}}{2}$ and $\sin(\theta) = \frac{1}{2}$, and so $\theta = \frac{\pi}{6}$.

2. (2 points) Write the point $(x, y, z) = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}, 1\right)$ in spherical coordinates (ρ, θ, ϕ) .

Solution: The length of the vector (x, y, z) is $\rho = \sqrt{\frac{1}{4} + \frac{3}{4} + 1} = \sqrt{2}$. Forgetting the *z*-coordinate, the projection to the *x*, *y*-plane is $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$, and so $\theta = \frac{\pi}{3}$. Finall, $y \phi$ is the angle between the vectors $\left\langle \frac{1}{2}, \frac{\sqrt{3}}{2}, 1 \right\rangle$ and $\langle 0, 0, 1 \rangle$. The dot product of these vectors is 1, so the angle is $\phi = \cos^{-1}\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}$.

3. (3 points) Use a triple integral in cylindrical coordinates to compute the volume of the region between the two paraboloids $z = x^2 + y^2$ and $z = 2 - (x^2 + y^2)$.

Solution: The equations of the two surfaces in cylindrical coordinates are $z = r^2$ and $z = 2 - r^2$. Setting them equal, we see that they intersect when r = 1 and z = 1. So the volume is given by

$$\iiint_{E} dx \, dy \, dz = \int_{0}^{1} \int_{0}^{2\pi} \int_{r^{2}}^{2-r^{2}} r \, dz \, d\theta \, dr$$
$$= \int_{0}^{1} \int_{0}^{2\pi} r(2 - r^{2} - r^{2}) \, d\theta \, dr$$
$$= 2 \int_{0}^{1} \int_{0}^{2\pi} r(1 - r^{2}) \, d\theta \, dr$$
$$= 4\pi \int_{0}^{1} (r - r^{3}) \, dr$$
$$= \pi$$