Name:

\qquad

Clear your desk of everything excepts pens, pencils and erasers.
If you have a question, please raise your hand.

1. (2 points) Let D be the region of the plane described by the inequalities:

- $1 \leq x^{2}+y^{2} \leq 4$
- $x \geq 0$
- $0 \leq y \leq x$

Which is the proper way to convert the integral $\iint_{D}\left(1+x y+\frac{1}{x^{2}+y^{2}}\right) d x d y$ to polar coordinates?

Solution: For the integrand function, just substitute $x=r \cos (\theta)$ and $y=r \sin (\theta)$. The differential $d x d y$ becomes $r d r d \theta$. For the limits on the integrals, we must examine the region D. It looks like:

We can see that D is described by the polar inequalities $1 \leq r \leq 2$ and $0 \leq \theta \leq \frac{\pi}{4}$. So the transformed integral is

$$
\int_{0}^{\pi / 4} \int_{1}^{2}\left(1+r^{2} \cos (\theta) \sin (\theta)+\frac{1}{r^{2}}\right) r d r d \theta
$$

2. (2 points) What is the volume of the region above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the plane $z=1$?

Solution: The two surfaces intersect in the circle of radius 1 (in the plane $z=1$). So the volume is given by integrating the top minus the bottom over the region inside the unit circle D :

$$
\text { volume }=\iint_{D}\left(1-\sqrt{x^{2}+y^{2}}\right) d x d y
$$

This is simpler in polar coordinates, where it becomes

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{2 \pi}(1-r) r d \theta d r & =2 \pi \int_{0}^{1}\left(r-r^{2}\right) d r \\
& =2 \pi\left(\frac{1}{2}-\frac{1}{3}\right) \\
& =\frac{2 \pi}{6} \\
& =\frac{\pi}{3}
\end{aligned}
$$

3. (2 points) Consider the 3 -dimensional region E which is above the paraboloid $z=4\left(x^{2}+y^{2}\right)$ and below the plane $z=4$. Suppose the density in this region is given by $\rho(x, y, z)=z$. Compute the mass of the region E.

Solution: We know that mass is computed as the integral of density:

$$
\text { mass of } E=\iiint_{E} \rho(x, y, z) d V
$$

The intersection of the top and bottom surfaces $z=4\left(x^{2}+y^{2}\right)$ and $z=4$ is the circle of radius 1 in the plane $z=4$. So the "shadow"/projection of E onto the x, y-plane is the inside of the unit circle. So we can write our integral as

$$
\begin{aligned}
\iiint_{E} \rho(x, y, z) d V & =\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{4\left(x^{2}+y^{2}\right)}^{4} z d z d y d x \\
& =\frac{1}{2} \int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}}\left(16-16\left(x^{2}+y^{2}\right)^{2}\right) d y d x \\
& =8 \int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}}\left(1-\left(x^{2}+y^{2}\right)^{2}\right) d y d x
\end{aligned}
$$

At this point, it would be easiest to convert to polar coordinates:

$$
\begin{aligned}
8 \int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}}\left(1-\left(x^{2}+y^{2}\right)^{2}\right) d y d x & =8 \int_{0}^{1} \int_{0}^{2 \pi}\left(1-r^{4}\right) r d \theta d r \\
& =16 \pi \int_{0}^{1}\left(r-r^{5}\right) d r \\
& =16 \pi\left(\frac{1}{2}-\frac{1}{6}\right) \\
& =\frac{16 \pi}{3}
\end{aligned}
$$

