
MTH 234 Solutions to Quiz 6b March 2nd 2017

Name:

Clear your desk of everything excepts pens, pencils and erasers.
If you have a question, please raise your hand.

1. (2 points) Consider the function f(x, y) = y
1+x2+y2

. Its partial derivatives are:

fx =
−2xy

(1 + x2 + y2)2
fy =

1 + x2 − y2

(1 + x2 + y2)2

fxx =
2y(3x2 − y2 − 1)

(1 + x2 + y2)3
fyy =

−2y(3x2 − y2 + 3)

(1 + x2 + y2)3

fxy =
−2x(x2 − 3y2 + 1)

(1 + x2 + y2)3

Where does f have a local maximum?

Solution: Notice that fx can only be zero if either x or y is zero (since the denominator can never be zero).
But looking at fy, we see that if y = 0, then fy can not be zero, since 1 + x2 is never zero. But, if x = 0,
then 1 − y2 can be zero if y = ±1. So we see there are two critical points where ∇f = 〈0, 0〉, at (0, 1) and
(0,−1).
Now use the second derivative test at the two points. First do (x, y) = (0, 1). Then the second derivatives
are fxx = −1

2
, fyy = −1

2
, and fxy = 0. So the Hessian determinant is

D(0, 1) = fxx(0, 1) · fyy(0, 1)− fxy(0, 1)2 =
1

4

Since D > 0, (0, 1) is not a saddle point. Since fxx < 0, it is a local maximum. So the answer is (0, 1).

Continue on to back side
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2. (2 points) What is the tangent plane to the surface xyz + sin(x+ y + z) = 1 +
π3

288
at the point

(
π
12
, π
6
, π
4

)
?

Solution: De�ne the function f(x, y, z) = xyz + sin(x + y + z). Then the surface above is given by
f(x, y, z) = 1+ π3

288
. The normal vector to the tangent plane is then given by the gradient∇f . Compute the

partial derivatives to see that

∇f(x, y, z) = 〈yz + cos(x+ y + z), xz + cos(x+ y + z), xy + cos(x+ y + z)〉
= 〈yz, xz, xy〉+ cos(x+ y + z) 〈1, 1, 1〉

We are interested in the point (x, y, z) =
(
π
12
, π
6
, π
4

)
:

∇f
( π
12
,
π

6
,
π

4

)
=

〈
π2

24
,
π2

48
,
π2

72

〉
+ cos

(π
2

)
〈1, 1, 1〉

=
π2

24

〈
1,

1

2
,
1

3

〉
We can rescale and just use 〈1, 2, 3〉 as the normal vector for our plane. So the equation is(

x− π

12

)
+

1

2

(
y − π

6

)
+

1

3

(
z − π

4

)
= 0
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3. (2 points) Compute the double integral ∫∫
R

sin(6x− y) dA

where R is the rectangle with 0 ≤ x ≤ π
2

and 0 ≤ y ≤ π
2
.

Solution: We can integrate in whichever order we like. Let’s do x �rst:∫ π/2

0

∫ π/2

0

sin(6x− y)dx dy = −1

6

∫ π/2

0

[cos(6x− y)]π/20 dy

= −1

6

∫ π/2

0

(cos(3π − y)− cos(−y)) dy

= −1

6

∫ π/2

0

(− cos(y)− cos(−y)) dy (1)

= −1

6

∫ π/2

0

(− cos(y)− cos(y)) dy (2)

=
1

3

∫ π/2

0

cos(y)dy

=
1

3
[sin(y)]π/20

=
1

3

The above labelled steps have used the facts:

1. cos(π + t) = − cos(t)
Visually, this is the fact that if you go halfway around the circle, the x-value is negated.

2. cos(−t) = cos(t)
This is because cos(t) is an even function. Visually, if you re�ect the circle over the x-axis, the x-value
doesn’t change.
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An alternate solution (integrating in the other order):

Solution: ∫ π/2

0

∫ π/2

0

sin(6x− y)dy dx =

∫ π/2

0

[cos(6x− y)]π/20 dx

=

∫ π/2

0

(
cos
(
6x− π

2

)
− cos(6x)

)
dx

=
1

6

[
sin
(
6x− π

2

)
− sin(6x)

]π/2
0

=
1

6

(
sin

(
5π

2

)
− sin

(
−π
2

)
− sin(3π) + sin(0)

)
=

1

6

(
sin
(π
2

)
+ sin

(π
2

)
− sin(π) + sin(0)

)
=

1

6
(1 + 1− 0 + 0)

=
1

3
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