## Name:

$\qquad$

Clear your desk of everything excepts pens, pencils and erasers.
If you have a question, please raise your hand.

1. (2 points) Consider the function $f(x, y)=\frac{y}{1+x^{2}+y^{2}}$. Its partial derivatives are:

$$
\begin{gathered}
f_{x}=\frac{-2 x y}{\left(1+x^{2}+y^{2}\right)^{2}} \quad f_{y}=\frac{1+x^{2}-y^{2}}{\left(1+x^{2}+y^{2}\right)^{2}} \\
f_{x x}=\frac{2 y\left(3 x^{2}-y^{2}-1\right)}{\left(1+x^{2}+y^{2}\right)^{3}} \quad f_{y y}=\frac{-2 y\left(3 x^{2}-y^{2}+3\right)}{\left(1+x^{2}+y^{2}\right)^{3}} \\
f_{x y}=\frac{-2 x\left(x^{2}-3 y^{2}+1\right)}{\left(1+x^{2}+y^{2}\right)^{3}}
\end{gathered}
$$

Where does $f$ have a local maximum?

Solution: Notice that $f_{x}$ can only be zero if either $x$ or $y$ is zero (since the denominator can never be zero). But looking at $f_{y}$, we see that if $y=0$, then $f_{y}$ can not be zero, since $1+x^{2}$ is never zero. But, if $x=0$, then $1-y^{2}$ can be zero if $y= \pm 1$. So we see there are two critical points where $\nabla f=\langle 0,0\rangle$, at $(0,1)$ and $(0,-1)$.
Now use the second derivative test at the two points. First do $(x, y)=(0,1)$. Then the second derivatives are $f_{x x}=-\frac{1}{2}, f_{y y}=-\frac{1}{2}$, and $f_{x y}=0$. So the Hessian determinant is

$$
D(0,1)=f_{x x}(0,1) \cdot f_{y y}(0,1)-f_{x y}(0,1)^{2}=\frac{1}{4}
$$

Since $D>0,(0,1)$ is not a saddle point. Since $f_{x x}<0$, it is a local maximum. So the answer is $(0,1)$.
2. (2 points) What is the tangent plane to the surface $x y z+\sin (x+y+z)=1+\frac{\pi^{3}}{288}$ at the point $\left(\frac{\pi}{12}, \frac{\pi}{6}, \frac{\pi}{4}\right)$ ?

Solution: Define the function $f(x, y, z)=x y z+\sin (x+y+z)$. Then the surface above is given by $f(x, y, z)=1+\frac{\pi^{3}}{288}$. The normal vector to the tangent plane is then given by the gradient $\nabla f$. Compute the partial derivatives to see that

$$
\begin{aligned}
\nabla f(x, y, z) & =\langle y z+\cos (x+y+z), x z+\cos (x+y+z), x y+\cos (x+y+z)\rangle \\
& =\langle y z, x z, x y\rangle+\cos (x+y+z)\langle 1,1,1\rangle
\end{aligned}
$$

We are interested in the point $(x, y, z)=\left(\frac{\pi}{12}, \frac{\pi}{6}, \frac{\pi}{4}\right)$ :

$$
\begin{aligned}
\nabla f\left(\frac{\pi}{12}, \frac{\pi}{6}, \frac{\pi}{4}\right) & =\left\langle\frac{\pi^{2}}{24}, \frac{\pi^{2}}{48}, \frac{\pi^{2}}{72}\right\rangle+\cos \left(\frac{\pi}{2}\right)\langle 1,1,1\rangle \\
& =\frac{\pi^{2}}{24}\left\langle 1, \frac{1}{2}, \frac{1}{3}\right\rangle
\end{aligned}
$$

We can rescale and just use $\langle 1,2,3\rangle$ as the normal vector for our plane. So the equation is

$$
\left(x-\frac{\pi}{12}\right)+\frac{1}{2}\left(y-\frac{\pi}{6}\right)+\frac{1}{3}\left(z-\frac{\pi}{4}\right)=0
$$

3. (2 points) Compute the double integral

$$
\iint_{R} \sin (6 x-y) d A
$$

where $R$ is the rectangle with $0 \leq x \leq \frac{\pi}{2}$ and $0 \leq y \leq \frac{\pi}{2}$.

Solution: We can integrate in whichever order we like. Let's do $x$ first:

$$
\begin{align*}
\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \sin (6 x-y) d x d y & =-\frac{1}{6} \int_{0}^{\pi / 2}[\cos (6 x-y)]_{0}^{\pi / 2} d y \\
& =-\frac{1}{6} \int_{0}^{\pi / 2}(\cos (3 \pi-y)-\cos (-y)) d y \\
& =-\frac{1}{6} \int_{0}^{\pi / 2}(-\cos (y)-\cos (-y)) d y  \tag{1}\\
& =-\frac{1}{6} \int_{0}^{\pi / 2}(-\cos (y)-\cos (y)) d y  \tag{2}\\
& =\frac{1}{3} \int_{0}^{\pi / 2} \cos (y) d y \\
& =\frac{1}{3}[\sin (y)]_{0}^{\pi / 2} \\
& =\frac{1}{3}
\end{align*}
$$

The above labelled steps have used the facts:

1. $\cos (\pi+t)=-\cos (t)$

Visually, this is the fact that if you go halfway around the circle, the $x$-value is negated.
2. $\cos (-t)=\cos (t)$

This is because $\cos (t)$ is an even function. Visually, if you reflect the circle over the $x$-axis, the $x$-value doesn't change.
$\qquad$

An alternate solution (integrating in the other order):

## Solution:

$$
\begin{aligned}
\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \sin (6 x-y) d y d x & =\int_{0}^{\pi / 2}[\cos (6 x-y)]_{0}^{\pi / 2} d x \\
& =\int_{0}^{\pi / 2}\left(\cos \left(6 x-\frac{\pi}{2}\right)-\cos (6 x)\right) d x \\
& =\frac{1}{6}\left[\sin \left(6 x-\frac{\pi}{2}\right)-\sin (6 x)\right]_{0}^{\pi / 2} \\
& =\frac{1}{6}\left(\sin \left(\frac{5 \pi}{2}\right)-\sin \left(-\frac{\pi}{2}\right)-\sin (3 \pi)+\sin (0)\right) \\
& =\frac{1}{6}\left(\sin \left(\frac{\pi}{2}\right)+\sin \left(\frac{\pi}{2}\right)-\sin (\pi)+\sin (0)\right) \\
& =\frac{1}{6}(1+1-0+0) \\
& =\frac{1}{3}
\end{aligned}
$$

