Name: _

Show your work, or give reasoning, to receive full credit.

- 1. Consider the function $f(x, y) = \tan^{-1} (e^{xy})$.
 - (a) (1 point) Compute the gradient $\nabla f(x, y)$.

Solution:	$\partial f = u \sigma^{xy}$
	$\frac{\partial f}{\partial x} = \frac{ye^{-y}}{1+e^{2xy}}$
	$\frac{\partial f}{\partial u} = \frac{xe^{xy}}{1+e^{2xy}}$
So the gradient vector is	
	$\nabla f(x,y) = \left\langle \frac{ye^{xy}}{1+e^{2xy}}, \frac{xe^{xy}}{1+e^{2xy}} \right\rangle$

(b) (1 point) Compute the directional derivative $D_{\vec{u}}f$ at the point $(1, \ln(2))$, where \vec{u} is the unit vector in the direction $\langle -1, \ln(2) \rangle$.

Solution: Call the given vector $\vec{v} = \langle -1, \ln(2) \rangle$. It is not a unit vector, so we should divide by its length to get a unit vector $\vec{u} = \frac{1}{|\vec{v}|}\vec{v}$. We also need the value of the gradient at the point $(1, \ln(2))$:

$$\nabla f(1,\ln(2)) = \frac{2}{5} \left\langle \ln(2), 1 \right\rangle$$

Finally, the directional derivative is the dot product:

$$D_{\vec{u}}f(1,\ln(2)) = \vec{u} \cdot \nabla f(1,\ln(2))$$

= $\frac{2}{5|\vec{v}|} \langle -1,\ln(2) \rangle \cdot \langle \ln(2),1 \rangle$
= $\frac{2}{5|\vec{v}|} (-\ln(2) + \ln(2))$
= 0