Name:

\qquad

Show your work, or give reasoning, to receive full credit.

1. Consider the function $f(x, y)=\tan ^{-1}\left(e^{x y}\right)$.
(a) (1 point) Compute the gradient $\nabla f(x, y)$.

Solution:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\frac{y e^{x y}}{1+e^{2 x y}} \\
& \frac{\partial f}{\partial y}=\frac{x e^{x y}}{1+e^{2 x y}}
\end{aligned}
$$

So the gradient vector is

$$
\nabla f(x, y)=\left\langle\frac{y e^{x y}}{1+e^{2 x y}}, \frac{x e^{x y}}{1+e^{2 x y}}\right\rangle
$$

(b) (1 point) Compute the directional derivative $D_{\vec{u}} f$ at the point $(1, \ln (2))$, where \vec{u} is the unit vector in the direction $\langle-1, \ln (2)\rangle$.

Solution: Call the given vector $\vec{v}=\langle-1, \ln (2)\rangle$. It is not a unit vector, so we should divide by its length to get a unit vector $\vec{u}=\frac{1}{|\vec{v}|} \vec{v}$. We also need the value of the gradient at the point $(1, \ln (2))$:

$$
\nabla f(1, \ln (2))=\frac{2}{5}\langle\ln (2), 1\rangle
$$

Finally, the directional derivative is the dot product:

$$
\begin{aligned}
D_{\vec{u}} f(1, \ln (2)) & =\vec{u} \cdot \nabla f(1, \ln (2)) \\
& =\frac{2}{5|\vec{v}|}\langle-1, \ln (2)\rangle \cdot\langle\ln (2), 1\rangle \\
& =\frac{2}{5|\vec{v}|}(-\ln (2)+\ln (2)) \\
& =0
\end{aligned}
$$

