Name: \qquad

Clear your desk of everything excepts pens, pencils and erasers.
If you have a question, please raise your hand.

1. Consider the function $f(x, y)=x^{2}+2 y^{2}$.
(a) (1 point) Compute $f_{x}(x, y)$.

Solution: $f_{x}(x, y)=2 x$
(b) (1 point) Evaluate $f_{x}(1,1)$.

Solution: $f_{x}(1,1)=2(1)=2$
(c) (1 point) Compute $f_{y}(x, y)$.

Solution: $f_{y}(x, y)=4 y$
(d) (1 point) Evaluate $f_{y}(1,1)$.

Solution: $f_{y}(1,1)=4(1)=4$
(e) (1 point) Write the equation of the tangent plane to the graph of $z=f(x, y)$ at the point where $x=1$ and $y=1$.

Solution: The tangent plane at $(x, y)=(1,1)$ is

$$
\begin{aligned}
z & =f(1,1)+f_{x}(1,1)(x-1)+f_{y}(1,1)(y-1) \\
& =3+2(x-1)+4(y-1)
\end{aligned}
$$

(f) (1 point) Suppose that $x=t^{2}+5$ and $y=e^{t} \sin (t)$. Then what is $\frac{d f}{d t}$?

Solution: According to the chain rule:

$$
\frac{d f}{d t}=\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d t}
$$

The partial derivatives of f are:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=2 x=2 t^{2}+10 \\
& \frac{\partial f}{\partial y}=4 y=4 e^{t} \sin (t)
\end{aligned}
$$

The derivatives of x and y are:

$$
\begin{gathered}
\frac{d x}{d t}=2 t \\
\frac{d y}{d t}=e^{t}(\sin (t)+\cos (t))
\end{gathered}
$$

So all together, we have:

$$
\frac{d f}{d t}=\left(2 t^{2}+10\right) \cdot(2 t)+\left(4 e^{t} \sin (t)\right) \cdot e^{t}(\sin (t)+\cos (t))
$$

