Name: \qquad

Show your work, or give reasoning, to receive full credit.

1. Consider the function $f(x, y)=e^{2 x} \sin \left(x+y^{2}\right)$.
(a) (1 point) Compute the partial derivative $f_{x}=\frac{\partial f}{\partial x}$.

Solution: $\frac{\partial f}{\partial x}=2 e^{2 x} \sin \left(x+y^{2}\right)+e^{2 x} \cos \left(x+y^{2}\right)$
This can also be factored and written as

$$
e^{2 x}\left(2 \sin \left(x+y^{2}\right)+\cos \left(x+y^{2}\right)\right)
$$

(b) (1 point) Compute the second partial derivative $f_{x y}=\frac{\partial^{2} f}{\partial y \partial x}$.

Solution: $\frac{\partial^{2} f}{\partial y \partial x}=4 y e^{2 x} \cos \left(x+y^{2}\right)-2 y e^{2 x} \sin \left(x+y^{2}\right)$
This can also be factored and written as

$$
2 y e^{2 x}\left(2 \cos \left(x+y^{2}\right)-\sin \left(x+y^{2}\right)\right)
$$

2. (2 points) Compute the following limit, or show that it does not exist:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{y^{2}}{x^{2}+y^{2}}
$$

Solution: The limit does not exist, so we will show that there are at least two different paths approaching $(0,0)$ which give different limits. Let's approach along an arbitrary line $y=m x$:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{(m x)^{2}}{x^{2}+(m x)^{2}} & =\lim _{x \rightarrow 0} \frac{m^{2} x^{2}}{\left(1+m^{2}\right) x^{2}} \\
& =\lim _{x \rightarrow 0} \frac{m^{2}}{1+m^{2}} \\
& =\frac{m^{2}}{1+m^{2}}
\end{aligned}
$$

The limit depends on m, so the limit does not exist.

For a more straightforward solution, you could just compute two different limits. For example, the limit along $y=x$ would be $\frac{1}{2}$, but the limit along $y=2 x$ would be $\frac{4}{5}$.

