Name: \qquad

Clear your desk of everything excepts pens, pencils and erasers.
If you have a question, please raise your hand.

1. (2 points) Which of the following describes the domain of the function $f(x, y)=\frac{e^{x+y}}{x-y}$?

Solution: The exponential gives no restrictions. The only restriction is that the denominator $(x-y)$ cannot be zero. So the domain includes all points except those for for which $x=y$. In other words, the domain is all (x, y) such that $x \neq y$.
2. (2 points) What is the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{y^{2}-x^{2}}{y-x}$?

Solution: Notice that the numerator factors as $y^{2}-x^{2}=(y-x)(y+x)$. So this limit is equal to

$$
\lim _{(x, y) \rightarrow(0,0)}(y+x)=0+0=0
$$

3. (3 points) Compute the length of the curve

$$
\vec{r}(t)=\left\langle t, \frac{2 \sqrt{2}}{3} t^{3 / 2}, \frac{1}{2} t^{2}\right\rangle
$$

from $t=0$ to $t=1$.

Solution: We need to integrate the "speed" of this curve (meaning $\left|\vec{r}^{\prime}(t)\right|$). So let's compute the derivative:

$$
\vec{r}^{\prime}(t)=\langle 1, \sqrt{2 t}, t\rangle
$$

The norm of this vector is:

$$
\left|\vec{r}^{\prime}(t)\right|=\sqrt{1+2 t+t^{2}}=\sqrt{(1+t)^{2}}=1+t
$$

The length of the curve from $t=0$ to $t=1$ is then:

$$
\int_{0}^{1}\left|\vec{r}^{\prime}(t)\right| d t=\int_{0}^{1}(1+t) d t=\left[t+\frac{t^{2}}{2}\right]_{0}^{1}=\frac{3}{2}
$$

4. (3 points) Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does not exist.

Solution: We must show that there are at least two different paths, both of which approach $(0,0)$, but give different limits. Let's approach the origin along a generic line $y=m x$ for some constant m. So we plug in $y=m x$ in the original expression and take the 1-variable limit as $x \rightarrow 0$.

$$
\lim _{x \rightarrow 0} \frac{x(m x)}{x^{2}+(m x)^{2}}=\lim _{x \rightarrow 0} \frac{m x^{2}}{\left(1+m^{2}\right) x^{2}}=\frac{m}{1+m^{2}}
$$

This depends on the slope m. In particular, for $m=1(y=x)$ the limit is $\frac{1}{2}$, but for $m=2(y=2 x)$ the limit is $\frac{2}{5}$. So the limit does not exist.
\qquad

