Name: \qquad

Show your work, or give reasoning, to receive full credit.

1. Consider the parametric curve

$$
\vec{r}(t)=\left\langle\ln (t), t^{2} \sin (\pi t), 5 t-3\right\rangle
$$

(a) (1 point) Compute $\vec{r}^{\prime}(t)$.

Solution: $\vec{r}^{\prime}(t)=\left\langle\frac{1}{t}, 2 t \sin (\pi t)+\pi t^{2} \cos (\pi t), 5\right\rangle$
(b) (1 point) Evaluate $\vec{r}^{\prime}(1)$.

Solution: $\vec{r}^{\prime}(1)=\langle 1,-\pi, 5\rangle$
(c) (2 points) Write an equation for the tangent line to the curve at the point where $t=1$.

Solution: First note that $\vec{r}(1)=\langle 0,0,2\rangle$. The direction is the vector from the previous part. So the tangent line equation is

$$
\vec{\ell}(t)=\langle 0,0,2\rangle+t\langle 1,-\pi, 5\rangle
$$

2. (1 point) For the curve

$$
\vec{r}(t)=\langle 2 \cos (t), 2 \sin (t), 3 t\rangle
$$

what is $\vec{T}(\pi)$, the unit tangent vector at $t=\pi$?

Solution: The tangent vector is the derivative

$$
\vec{r}^{\prime}(t)=\langle-2 \sin (t), 2 \cos (t), 3\rangle
$$

At $t=\pi$, this is

$$
\vec{r}^{\prime}(\pi)=\langle 0,-2,3\rangle
$$

The length of this vector is $\sqrt{4+9}=\sqrt{13}$, so the unit tangent vector is

$$
\vec{T}(\pi)=\frac{1}{\sqrt{13}}\langle 0,-2,3\rangle
$$

3. (1 point) Assume that at time $t=0$, a moving object is at position $\langle 0,0,1\rangle$, and that its velocity is given by

$$
\vec{v}(t)=\left\langle\frac{1}{1+t^{2}}, 2 t, e^{3 t}\right\rangle
$$

What is the position of the object at time $t=1$?

Solution: The position is given by

$$
\vec{r}(t)=\int \vec{v}(t) d t=\left\langle\tan ^{-1}(t), t^{2}, \frac{1}{3} e^{3 t}\right\rangle+\left\langle c_{1}, c_{2}, c_{3}\right\rangle
$$

Since $\vec{r}(0)=\langle 0,0,1\rangle$, we have

$$
\langle 0,0,1\rangle=\left\langle 0,0, \frac{1}{3}\right\rangle+\left\langle c_{1}, c_{2}, c_{3}\right\rangle
$$

So we get the position function is

$$
\vec{r}(t)=\left\langle\tan ^{-1}(t), t^{2}, \frac{e^{3 t}+2}{3}\right\rangle
$$

So at time $t=1$, the position is

$$
\vec{r}(1)=\left\langle\frac{\pi}{4}, 1, \frac{e^{3}+2}{3}\right\rangle
$$

4. (Bonus 1 pt) A projectile is fired from position $\langle 0,0\rangle$ with initial speed 64 feet per second, at an angle θ above the horizontal. If the projectile lands at position $\langle 128,0\rangle$, then what is θ ?

(Use 32 feet per second per second for the acceleration of gravity)

Solution: From class, we know that the position function is given by:

$$
\vec{r}(t)=\left\langle 64 \cos (\theta) t, 64 \sin (\theta) t-16 t^{2}\right\rangle
$$

How long does it take for the projectile to land? Solve for when the y-coordinate is zero:

$$
0=64 \sin (\theta) t-16 t^{2}=16 t(4 \sin (\theta)-t)
$$

The only non-zero solution is $t=4 \sin (\theta)$. At this time, the x-coordinate should be 128 . Use this to finally solve for θ :

$$
\begin{aligned}
128 & =64 \cos (\theta) \cdot 4 \sin (\theta) \\
\frac{1}{2} & =\sin (\theta) \cos (\theta) \\
1 & =\sin (2 \theta) \\
\frac{\pi}{2} & =2 \theta \\
\frac{\pi}{4} & =\theta
\end{aligned}
$$

$$
(\sin (2 \theta)=2 \sin (\theta) \cos (\theta))
$$

