Name: \qquad

Show your work, or give reasoning, to receive full credit.

1. (1 point) For the vector function given by

$$
\vec{r}(t)=\left\langle t^{2}+1, \frac{t^{2}-1}{t-1}, e^{t-1}\right\rangle
$$

compute the limit $\lim _{t \rightarrow 1} \vec{r}(t)$.
Solution: We know that this is given by

$$
\lim _{t \rightarrow 1} \vec{r}(t)=\left\langle\lim _{t \rightarrow 1} t^{2}+1, \lim _{t \rightarrow 1} \frac{t^{2}-1}{t-1}, \lim _{t \rightarrow 1} e^{t-1}\right\rangle
$$

The x and z components are continuous at $t=1$, so we may simply plug in $t=1$ to compute the limits. But the y-component is not defined for $t=1$ (since the denominator is $t-1$), so we cannot plug in $t=1$. For this, note that when $t \neq 1$, we can factor and cancel:

$$
\frac{t^{2}-1}{t-1}=\frac{(t-1)(t+1)}{t-1}=t+1
$$

So the y-component agrees with $t+1$ when $t \neq 1$. This means that the limits are the same:

$$
\lim _{t \rightarrow 1} \frac{t^{2}-1}{t-1}=\lim _{t \rightarrow 1} t+1=2
$$

So we finally get:

$$
\lim _{t \rightarrow 1} \vec{r}(t)=\langle 2,2,1\rangle
$$

2. (3 points) Consider the curve

$$
\vec{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle
$$

At what values of t does this curve intersect the surface given by the equation $z=y^{2}-x^{2}$?

(Hint: there are 3 points of intersection)

Solution: For a point to be in the intersection, it means its coordinates must satisfy both equations. At time t, the coordinates are given by $\vec{r}(t)=\langle x(t), y(t), z(t)\rangle=\left\langle t, t^{2}, t^{3}\right\rangle$. On the other hand, since the point is also on the hyperbolic paraboloid, the coordinates also satisfy $z(t)=y(t)^{2}-x(t)^{2}$. Plugging in the coordinate functions, this gives

$$
\begin{aligned}
& t^{3}=\left(t^{2}\right)^{2}-(t)^{2} \\
& t^{3}=t^{4}-t^{2} \\
& t^{3}=t^{2}\left(t^{2}-1\right)
\end{aligned}
$$

At this point, we can see that $t=0$ will be a solution. There are still 2 others, though. So, assuming now that $t \neq 0$, we can divide the equation by t^{2} :

$$
\begin{aligned}
t & =t^{2}-1 \\
0 & =t^{2}-t-1
\end{aligned}
$$

From here, use the quadratic formula to get that the two other solutions are

$$
t=\frac{1 \pm \sqrt{5}}{2}
$$

