Name:

\qquad

Clear your desk of everything excepts pens, pencils and erasers. If you have a question, please raise your hand.

1. (2 points) Which equation describes the pictured surface?

Solution: We can see that the surface is a cylinder, whose cross-sections with planes $y=c$ are parabolas. So the equation is $z=x^{2}$ (note that y is missing).
2. (2 points) Which equation describes the pictured surface?

Solution: Notice that the cross sections with $z=c$ for $c>0$ are hyperbolas which cross the y-axis. So the equation is $z=y^{2}-x^{2}$.
3. The following questions are all about the surface pictured below:

(a) (1 point) What is this surface called?

Solution: This is a hyperboloid of one sheet.
(b) (1 point) What are the cross-sections with planes $z=c$, where c is a constant?

Solution: They are ellipses.
(c) (Bonus, 1 point) Write an equation (in x and y) for the cross-sectional curve in the plane $z=0$.

Solution: From the picture, it appears the cross section in the plane $z=0$ is an ellipse which is stretched by 2 in the x-direction, and by 1 in the y-direction. So the equation should be

$$
\left(\frac{x}{2}\right)^{2}+y^{2}=1
$$

This leads one to believe that the equation of the hyperboloid is probably

$$
z^{2}=\left(\frac{x}{2}\right)^{2}+y^{2}-1
$$

