Name:

\qquad

1. (2 points) Write an equation for the line through the point $(1,2,3)$ which is parallel to the line

$$
\vec{\ell}(t)=\langle 5 t, 3-7 t, 2+4 t\rangle
$$

Solution: The desired line will have an equation of the form

$$
\vec{r}(t)=\langle 1,2,3\rangle+t \vec{v}
$$

for some \vec{v} which is parallel to the line $\vec{\ell}$. We can write $\vec{\ell}$ as

$$
\vec{\ell}(t)=\langle 0,3,2\rangle+t\langle 5,-7,4\rangle
$$

So we can use $\vec{v}=\langle 5,-7,4\rangle$, to get our desired line:

$$
\vec{r}(t)=\langle 1,2,3\rangle+t\langle 5,-7,4\rangle
$$

2. (2 points) Write an equation for the plane which contains the points $P=(0,0,1)$ and $Q=(1,1,0)$, and $R=(-1,2,3)$.

Solution: We have three points in the plane, so we just need a normal vector. Notice that the vectors $\overrightarrow{P Q}$ and $\overrightarrow{P R}$ are in the plane, so the normal vector is orthogonal to both. So we can use the cross product:

$$
\vec{n}=\overrightarrow{P Q} \times \overrightarrow{P R}
$$

First let's find the two vectors:

$$
\begin{aligned}
& \overrightarrow{P Q}=\langle 1,1,-1\rangle \\
& \overrightarrow{P R}=\langle-1,2,2\rangle
\end{aligned}
$$

So the normal vector is the cross product of these:

$$
\vec{n}=\langle 1,1,-1\rangle \times\langle-1,2,2\rangle=\langle 4,-1,3\rangle
$$

We can use any of the three points to get an equation. Using $P=(0,0,1)$, we get

$$
4 x-y+3(z-1)=0
$$

