Name: \qquad

Clear your desk of everything excepts pens, pencils and erasers.
If you have a question, please raise your hand.

1. (1 point) Which of the following represents the area of the triangle formed by the points P, Q, and R, where θ is the angle between $\overrightarrow{P Q}$ and $\overrightarrow{P R}$?

Solution: The area is given by half of the norm of the cross product of $\overrightarrow{P Q}$ and $\overrightarrow{P R}$, which is

$$
\frac{1}{2}|\overrightarrow{P Q}||\overrightarrow{P R}| \sin (\theta)
$$

2. (1 point) Which of the following is the angle between the vectors $\langle 5,2\rangle$ and $\langle 4,-10\rangle$?

Solution: The dot product of these vectors is

$$
\langle 5,2\rangle \cdot\langle 4,-10\rangle=5 \cdot 4+2 \cdot(-10)=20-20=0
$$

Since the dot product is zero, the vectors are orthogonal, and so the angle is $\frac{\pi}{2}$.
3. (2 points) Give a unit vector which is orthogonal to both $\langle 1,0,1\rangle$ and $\langle 2,3,-1\rangle$.

Solution: The cross product will be orthogonal to both vectors:

$$
\langle 1,0,1\rangle \times\langle 2,3,-1\rangle=\langle-3,3,3\rangle
$$

But this is not a unit vector, so we need to rescale it. The unit vector will be

$$
\frac{1}{\sqrt{27}}\langle-3,3,3\rangle
$$

4. (2 points) Compute the component of $\vec{v}=\langle 1,1,1\rangle$ in the direction of $\vec{w}=\langle 1,2,0\rangle$. $\left(\right.$ Recall that $\left.\operatorname{comp}_{\vec{w}}(\vec{v})=\mid \operatorname{proj}_{\vec{w}}(\vec{v})\right)$

Solution: The component is given by

$$
\begin{aligned}
\operatorname{comp}_{\vec{w}}(\vec{v}) & =\vec{v} \cdot \frac{\vec{w}}{|\vec{w}|} \\
& =\frac{\langle 1,1,1\rangle \cdot\langle 1,2,0\rangle}{|\langle 1,2,0\rangle|} \\
& =\frac{3}{\sqrt{5}}
\end{aligned}
$$

