Name: \qquad

1. (2 points) Consider the points $P=(1,0,0), Q=(2,3,3), R=(0,1,0)$, and $S=(0,1,1)$. Write down the unit vector (in components) pointing in the same direction as $\overrightarrow{P Q}-\overrightarrow{R S}$.

Solution: First let's compute the two vectors:

$$
\begin{aligned}
& \overrightarrow{P Q}=\langle 2-1,3-0,3-0\rangle=\langle 1,3,3\rangle \\
& \overrightarrow{R S}=\langle 0-0,1-1,1-0\rangle=\langle 0,0,1\rangle
\end{aligned}
$$

The difference is

$$
\overrightarrow{P Q}-\overrightarrow{R S}=\langle 1-0,3-0,3-1\rangle=\langle 1,3,2\rangle
$$

The norm of this vector is

$$
|\overrightarrow{P Q}-\overrightarrow{R S}|=\sqrt{1^{2}+3^{2}+2^{2}}=\sqrt{14}
$$

So the corresponding unit vector is

$$
\frac{1}{14}\langle 1,3,2\rangle=\left\langle\frac{1}{\sqrt{14}}, \frac{3}{\sqrt{14}}, \frac{2}{\sqrt{14}}\right\rangle
$$

2. (2 points) If $|\vec{v}|=2$, and $\vec{v} \cdot \vec{w}=\sqrt{2}$, and the angle between \vec{v} and \vec{w} is $\frac{\pi}{4}$, then what is $|\vec{w}|$?

Solution: We need to use the formula

$$
\vec{v} \cdot \vec{w}=|\vec{v}||\vec{w}| \cos (\theta)
$$

Plugging in what we know, this gives

$$
\sqrt{2}=2|\vec{w}| \cos (\pi / 4)=\sqrt{2}|\vec{w}|
$$

Solving this equation, we get that $|\vec{w}|=1$.

