## Name:

$\qquad$

1. Consider the vector field

$$
\vec{F}(x, y, z)=\left\langle\sin (y), x \cos (y)+\cos (z), \frac{1}{1+z^{2}}-y \sin (z)\right\rangle
$$

(a) Find a potential function for $\vec{F}$.
(i.e. find a function $f(x, y, z)$ so that $\nabla f=\vec{F}$ )

Solution: Integrate the first component with respect to $x$ :

$$
f=\int f_{x} d x=\int \sin (y) d x=x \sin (y)+g(y, z)
$$

for some function $g$ depending on $y$ and $z$. Now differentiate this with respect to $y$ :

$$
f_{y}=x \cos (y)+g_{y}
$$

On the other hand, it should be equal to $x \cos (y)+\cos (z)$, so $g_{y}=\cos (z)$. Integrate with respect to $y$ to get $g$ :

$$
g=\int g_{y} d y=\int \cos (z) d y=y \cos (z)+h(z)
$$

for some function $h$ depending only on $z$. Combining with the above results, we get

$$
f=x \sin (y)+y \cos (z)+h(z)
$$

Differentiate with respect to $z$ :

$$
f_{z}=-y \sin (z)+h^{\prime}(z)
$$

But it should also be equal to $\frac{1}{1+z^{2}}-y \sin (z)$, so we see that $h^{\prime}(z)=\frac{1}{1+z^{2}}$. Integrate to see that $h(z)=$ $\tan ^{-1}(z)+c$ for any choice of constant $c$. So we finally get

$$
f=x \cos (y)+y \cos (z)+\tan ^{-1}(z)+c
$$

(b) Evaluate the line integral $\int_{C} \vec{F} \cdot d \vec{r}$, where the curve $C$ is given parameterically by $\vec{r}(t)=\left\langle\cos (t), \sin (t), \frac{t}{\pi}\right\rangle$ for $0 \leq t \leq \pi$.

Solution: By part ( $a$ ), the vector field $\vec{F}$ is conservative ( $\vec{F}=\nabla f$ ), so we can use the Fundamental Theorem for Line Integrals, which says that

$$
\int_{C} \nabla f \cdot d \vec{r}=f(\vec{r}(\pi))-f(\vec{r}(0))
$$

At $t=0$, we have $\vec{r}(0)=\langle 1,0,0\rangle$, and so $f(\vec{r}(0))=\tan ^{-1}(0)=0$.
At $t=\pi$, we have $\vec{r}(\pi)=\langle-1,0,1\rangle$, and so $f(\vec{r}(\pi))=\tan ^{-1}(1)=\frac{\pi}{4}$.
The value of the line integral is then $\frac{\pi}{4}-0=\frac{\pi}{4}$.
2. Consider the triangle with vertices $(1,2,3),(1,0,1)$, and $(-1,1,0)$.
(a) Compute the area of the triangle.

Solution: Let's choose the vertex $(1,0,1)$, and write the vectors $\vec{v}$ and $\vec{w}$ which point from this vertex to the other two:

$$
\begin{gathered}
\vec{v}=\langle 1,2,3\rangle-\langle 1,0,1\rangle=\langle 0,2,2\rangle \\
\vec{w}=\langle-1,1,0\rangle-\langle 1,0,1\rangle=\langle-2,1,-1\rangle
\end{gathered}
$$

Then their cross product is $\vec{v} \times \vec{w}=\langle-4,-4,4\rangle=4\langle-1,-1,1\rangle$. The area of the triangle is half of the length of this vector:

$$
\text { area }=\frac{1}{2}|\vec{v} \times \vec{w}|=2 \sqrt{3}
$$

(b) Find an equation of the plane which contains the triangle.

Solution: From part (a), we know that $\langle-1,-1,1\rangle$ is a normal vector to the plane. Let's choose a point we know is on the plane, for example $(1,2,3)$. Then the equation of the plane is

$$
-(x-1)-(y-2)+z-3=0
$$

This can be re-written as $z=x+y$.
(c) Compute the line integral $\int_{C}\langle 2 z, 5 x, y\rangle \cdot d \vec{R}$ where $C$ is the boundary of the triangle, traversed counterclockwise when viewed from above.

Solution: Since the curve is closed, let's use Stokes' Theorem:

$$
\int_{C} \vec{F} \cdot d \vec{r}=\iint_{S} \nabla \times \vec{F} \cdot d \vec{S}
$$

So we need to compute the curl of $\vec{F}$ and choose a surface $S$ whose boundary is $C$. First, let's compute the curl

$$
\nabla \times \vec{F}=\langle 1,2,5\rangle
$$

For the surface $S$, let's use the flat triangle considered above. In other words, it is the part of the plane $z=x+y$ which lies above the triangle $D$ in the $x, y$-plane with vertices $(1,2),(1,0)$, and $(-1,1)$. Before we do the computation, we need to compute

$$
d \vec{S}=\left\langle-z_{x},-z_{y}, 1\right\rangle=\langle-1,-1,1\rangle d A
$$

So using Stokes' Theorem, we get

$$
\begin{aligned}
\int_{C} \vec{F} \cdot d \vec{r} & =\iint_{S} \nabla \times \vec{F} \cdot d \vec{S} \\
& =\iint_{D}\langle 1,2,5\rangle \cdot\langle-1,-1,1\rangle d A \\
& =2 \iint_{D} d A
\end{aligned}
$$

This is just twice the area of $D$. Since $D$ is a triangle with base 2 and height 2 , its area is 2 . So the value of the line integral is 4 .
3. Find and classify all the critical points of $f(x, y)=x^{2}+y^{2}+x^{2} y$.

Solution: First compute the gradient:

$$
\nabla f=\left\langle 2 x(1+y), 2 y+x^{2}\right\rangle
$$

We see there are two possible ways for $f_{x}$ to be zero: either $x=0$ or $y=-1$. On the other hand, in order for $f_{y}$ to be zero, we must have $y=-\frac{1}{2} x^{2}$. In the case that $x=0$, we get $y=-\frac{1}{2}(0)^{2}=0$. In the case that $y=-1$, we get $2=x^{2}$, and so $x= \pm \sqrt{2}$. So there are three critical points: $(0,0),(-\sqrt{2},-1)$, and $(\sqrt{2},-1)$.

Now compute the Hessian matrix of second partial derivatives

$$
H=\left(\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right)=\left(\begin{array}{cc}
2(1+y) & 2 x \\
2 x & 2
\end{array}\right)
$$

To use the Second Derivative Test, we need to compute the determinant of this matrix:

$$
D=f_{x x} f_{y y}-f_{x y}^{2}=4(1+y)-4 x^{2}=4\left(1+y-x^{2}\right)
$$

At $(0,0), D=4>0$, and $f_{x x}=2>0$, so $(0,0)$ is a local minimum.
At $(-\sqrt{2},-1), D=-8<0$, so $(-\sqrt{2},-1)$ is a saddle point.
At $(\sqrt{2},-1), D=-8<0$, so $(\sqrt{2},-1)$ is a saddle point.
4. Evaluate the integral $\iiint_{E} x^{2} d V$, where $E$ is the region inside the sphere $x^{2}+y^{2}+z^{2}=1$, and between the cones $z^{2}=\frac{1}{3}\left(x^{2}+y^{2}\right)$ and $z^{2}=3\left(x^{2}+y^{2}\right)$.

Solution: Notice that after substituting the spherical change-of-variables, the equation for a cone of the form $z^{2}=c\left(x^{2}+y^{2}\right)$ becomes $\tan (\phi)=\frac{1}{\sqrt{c}}$. In this example, we have $c=3$ and $c=\frac{1}{3}$. Then $c=3$ corresponds to $\tan (\phi)=\frac{1}{\sqrt{3}}$, and so $\phi=\pi / 6$. Also, $c=\frac{1}{3}$ corresponds to $\tan (\phi)=\sqrt{3}$, and so $\phi=\pi / 3$. So in spherical coordinates, the region $E$ is decribed by the inequalities:

$$
\begin{gathered}
0 \leq \rho \leq 1 \\
0 \leq \theta \leq 2 \pi \\
\frac{\pi}{6} \leq \phi \leq \frac{\pi}{3}
\end{gathered}
$$

So the integral becomes

$$
\begin{aligned}
\iiint_{E} x^{2} d V & =\int_{\pi / 6}^{\pi / 3} \int_{0}^{2 \pi} \int_{0}^{1}(\rho \sin (\phi) \cos (\theta))^{2} \rho^{2} \sin (\phi) d \rho d \theta d \phi \\
& =\int_{\pi / 6}^{\pi / 3} \int_{0}^{2 \pi} \int_{0}^{1} \rho^{4} \cos ^{2}(\theta) \sin ^{3}(\phi) d \rho d \theta d \phi \\
& =\frac{1}{5} \int_{\pi / 6}^{\pi / 3} \int_{0}^{2 \pi} \cos ^{2}(\theta) \sin ^{3}(\phi) d \theta d \phi \\
& =\frac{\pi}{5} \int_{\pi / 6}^{\pi / 3} \sin ^{3}(\phi) d \phi \\
& =\frac{\pi}{5}\left[\cos (\phi)\left(\frac{1}{3} \cos ^{2}(\phi)-1\right)\right]_{\pi / 6}^{\pi / 3} \\
& =\frac{\pi}{5} \cdot \frac{1}{8}\left(3 \sqrt{3}-\frac{11}{3}\right) \\
& =\frac{\pi}{40}\left(3 \sqrt{3}-\frac{11}{3}\right)
\end{aligned}
$$

5. Suppose that $f=x^{2} y+e^{x-y}$, and $x=t+3 s$ and $y=s^{2}-t^{2}$. If $t=1$ and $s=2$, then what is $\frac{\partial f}{\partial t}$ ?

Solution: Plug in $t=1$ and $s=2$ to get $x=7$ and $y=3$. Next Differentiate $x$ and $y$, and substitute:

$$
x_{t}=1, \quad y_{t}=-2 t=-2
$$

Now differentiate $f$ and substitute:

$$
\begin{gathered}
f_{x}=2 x y+e^{x-y}=42+e^{4} \\
f_{y}=x^{2}-e^{x-y}=49-e^{4}
\end{gathered}
$$

Finally, put it all together with the chain rule:

$$
f_{t}=f_{x} \cdot x_{t}+f_{y} \cdot y_{t}=42+e^{4}-2\left(49-e^{4}\right)
$$

6. Compute the angle between the vectors $\vec{v}=\langle 1,1,1\rangle$ and $\vec{w}=\frac{1}{2}\langle 0, \sqrt{3}-\sqrt{5}, \sqrt{3}+\sqrt{5}\rangle$.

Solution: We need to use the formula $\cos (\theta)=\frac{\vec{v} \cdot \vec{w}}{|\vec{v}||\vec{w}|}$. The dot product is

$$
\vec{v} \cdot \vec{w}=\frac{1}{2}(\sqrt{3}-\sqrt{5}+\sqrt{3}+\sqrt{5})=\sqrt{3}
$$

The length of $\vec{v}$ is $\sqrt{3}$, and the length of $\vec{w}$ is

$$
|\vec{w}|=\frac{1}{2} \sqrt{3+5+2 \sqrt{15}+3+5-2 \sqrt{15}}=\frac{1}{2} \sqrt{16}=2
$$

So we get that $\cos (\theta)=\frac{1}{2}$. Then the angle is $\theta=\frac{\pi}{3}$.
7. Find a unit vector which is orthogonal to both $\langle 1,2,-3\rangle$ and $\langle 0,0,1$,$\rangle .$

Solution: Take the cross product:

$$
\langle 1,2,-3\rangle \times\langle 0,0,1\rangle=\langle 2,-1,0\rangle
$$

This is orthogonal to the original two vectors. Now rescale to make it unit length, to get $\frac{1}{\sqrt{5}}\langle 2,-1,0\rangle$.
8. Suppose you are moving along the path $\vec{r}(t)=\left\langle\frac{1}{t^{2}+1}, \frac{t}{t^{2}+1}\right\rangle$. If you start at the point $(1,0)$ and move along this path a total distance of $\frac{\pi}{4}$, what position do you end up at?

Solution: Take the derivative of $\vec{r}$ :

$$
\vec{r}^{\prime}(t)=\left\langle\frac{-2 t}{\left(t^{2}+1\right)^{2}}, \frac{1-t^{2}}{\left(t^{2}+1\right)^{2}}\right\rangle=\frac{1}{\left(t^{2}+1\right)^{2}}\left\langle-2 t, 1-t^{2}\right\rangle
$$

Now take the length of this:

$$
\begin{aligned}
\left|\vec{r}^{\prime}(t)\right| & =\frac{\sqrt{(2 t)^{2}+(1-t)^{2}}}{\left(t^{2}+1\right)^{2}} \\
& =\frac{\sqrt{t^{2}+2 t+1}}{\left(t^{2}+1\right)^{2}} \\
& =\frac{t^{2}+1}{\left(t^{2}+1\right)^{2}} \\
& =\frac{1}{t^{2}+1}
\end{aligned}
$$

The arclength function is then the integral of this:

$$
s(T)=\int_{0}^{T} \frac{1}{t^{2}+1} d t=\tan ^{-1}(T)
$$

We want to know where we end up when $s=\frac{\pi}{4}$. We can see that this corresponds to $t=1$. So we end up at the point

$$
\vec{r}(1)=\left\langle\frac{1}{2}, \frac{1}{2}\right\rangle
$$

