Name:

1. Sketch the domain of the function $f(x, y)=\sqrt{y}+\ln \left(25-x^{2}-y^{2}\right)$.
(Indicate with solid or dashed lines whether the boundary points are included)
2. (5 points) Find $\lim _{(x, y) \rightarrow(0,0)} \frac{3 y^{2} \cos ^{2}(x)}{x^{2}+2 y^{2}}$ if it exists, or show it does not exist.

Solution: Let's try approaching along a generic line $y=m x$:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{3(m x)^{2} \cos ^{2}(x)}{x^{2}+2(m x)^{2}} & =\lim _{x \rightarrow 0} \frac{3 m^{2} x^{2} \cos ^{2}(x)}{x^{2}+2 m^{2} x^{2}} \\
& =\lim _{x \rightarrow 0} \frac{3 m^{2} \cos ^{2}(x)}{1+2 m^{2}} \\
& =\frac{3 m^{2}}{1+2 m^{2}} \cdot \lim _{x \rightarrow 0} \cos ^{2}(x) \\
& =\frac{3 m^{2}}{1+2 m^{2}}
\end{aligned}
$$

Since this expression depends on m, the limit does not exist.
3. Evaluate the double integrals
(a) (6 points) $\int_{0}^{1} \int_{y}^{1} e^{-x^{2}} d x d y$

Solution: Switch the order of integration:

$$
\begin{aligned}
\int_{0}^{1} \int_{y}^{1} e^{-x^{2}} d x d y & =\int_{0}^{1} \int_{0}^{x} e^{-x^{2}} d y d x \\
& =\int_{0}^{1} x e^{-x^{2}} d x \\
& =-\frac{1}{2} \int_{0}^{-1} e^{u} d u \\
& =\frac{1}{2} \int_{-1}^{0} e^{u} d u \\
& =\frac{1}{2}\left(1-\frac{1}{e}\right)
\end{aligned}
$$

(b) (6 points) $\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} e^{-\left(x^{2}+y^{2}\right)} d y d x$

Solution: Change to polar coordinates:

$$
\begin{aligned}
\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} e^{-\left(x^{2}+y^{2}\right)} d y d x & =\int_{0}^{1} \int_{0}^{2 \pi} e^{-r^{2}} r d \theta d r \\
& =2 \pi \int_{0}^{1} e^{-r^{2}} r d r \\
& =-\pi \int_{0}^{-1} e^{u} d u \\
& =\pi \int_{-1}^{0} e^{u} d u \\
& =\pi\left(1-\frac{1}{e}\right)
\end{aligned}
$$

4. (5 points) Find the length of the curve given by $\vec{r}(t)=\left\langle\frac{2}{3} t^{3 / 2}, \cos (2 t), \sin (2 t)\right\rangle$ between $t=0$ and $t=5$.

Solution:

$$
\begin{gathered}
\vec{r}^{\prime}(t)=\langle\sqrt{t},-2 \sin (2 t), 2 \cos (2 t)\rangle \\
\left|\vec{r}^{\prime}(t)\right|=\sqrt{t+4}
\end{gathered}
$$

So the length of the curve is

$$
\begin{aligned}
\int_{0}^{5} \sqrt{t+4} d t & =\int_{4}^{9} \sqrt{u} d u \\
& =\frac{2}{3}\left[u^{3 / 2}\right]_{4}^{9} \\
& =\frac{2}{3}(27-8) \\
& =\frac{38}{3}
\end{aligned}
$$

5. (16 points) Find the area of the part of the surface $z-x y=5$ that lies within the cylinder $x^{2}+y^{2}=3$.

Solution: Call D the circle of radius $\sqrt{3}$ in the x, y-plane. Then the surface area is

$$
\begin{aligned}
\iint_{D} \sqrt{1+x^{2}+y^{2}} d A & =\int_{0}^{\sqrt{3}} \int_{0}^{2 \pi} \sqrt{1+r^{2}} r d \theta d r \\
& =2 \pi \int_{0}^{\sqrt{3}} \sqrt{1+r^{2}} r d r \\
& =\pi \int_{1}^{4} \sqrt{u} d u \\
& =\frac{2 \pi}{3}\left[u^{3 / 2}\right]_{1}^{4} \\
& =\frac{2 \pi}{3}(8-1) \\
& =\frac{14 \pi}{3}
\end{aligned}
$$

6. (12 points) Evaluate $\oint_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}(x, y)=\left\langle x^{2} y, x y^{2}+\frac{2}{3} x^{3}\right\rangle$ and C is the positively oriented circle $x^{2}+y^{2}=1$.

Solution: Use Green's Theorem:

$$
\begin{aligned}
\oint_{C} \vec{F} \cdot d \vec{r} & =\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A \\
& =\iint_{D}\left(y^{2}+2 x^{2}-x^{2}\right) d A \\
& =\iint_{D}\left(y^{2}+x^{2}\right) d A \\
& =\int_{0}^{1} \int_{0}^{2 \pi} r^{3} d \theta d r \\
& =2 \pi \int_{0}^{1} r^{3} d r \\
& =\frac{\pi}{2}
\end{aligned}
$$

7. (16 points) Evaluate $\iint_{S} \vec{F} \cdot d \vec{S}$, where $\vec{F}=\left\langle x^{3}, y^{3}, z^{3}\right\rangle$ and S is the sphere $x^{2}+y^{2}+z^{2}=1$, oriented outward.

Solution: Use the Divergence Theorem:

$$
\begin{aligned}
\iint_{S} \vec{F} \cdot d \vec{S} & =\iiint_{E} \nabla \cdot \vec{F} d V \\
& =3 \iiint_{E}\left(x^{2}+y^{2}+z^{2}\right) d V \\
& =3 \int_{0}^{1} \int_{0}^{\pi} \int_{0}^{2 \pi} \rho^{4} \sin (\phi) d \theta d \phi d \rho \\
& =6 \pi \int_{0}^{1} \int_{0}^{\pi} \rho^{4} \sin (\phi) d \phi d \rho \\
& =12 \pi \int_{0}^{1} \rho^{4} d \rho \\
& =\frac{12 \pi}{5}
\end{aligned}
$$

8. (20 points) Find the volume of the solid enclosed by $z=x^{2}+y^{2}$ and $z=6-x^{2}-y^{2}$.

Solution: The two surfaces meet in a circle of radius $\sqrt{3}$, so the projection D onto the x, y-plane is the disc of radius $\sqrt{3}$. Then the volume is

$$
\begin{aligned}
\iint_{D}\left(6-2\left(x^{2}+y^{2}\right)\right) d A & =2 \iint_{D}\left(3-\left(x^{2}+y^{2}\right)\right) d A \\
& =2 \int_{0}^{\sqrt{3}} \int_{0}^{2 \pi}\left(3-r^{2}\right) r d \theta d r \\
& =4 \pi \int_{0}^{\sqrt{3}}\left(3 r-r^{3}\right) d r \\
& =4 \pi\left(\frac{3}{2}\left[r^{2}\right]_{0}^{\sqrt{3}}-\frac{1}{4}\left[r^{4}\right]_{0}^{\sqrt{3}}\right) \\
& =4 \pi\left(\frac{9}{2}-\frac{9}{4}\right) \\
& =9 \pi
\end{aligned}
$$

9. You want to make a cardboard box with no top, and volume 32 cubic inches. What dimensions will give the smallest possible surface area?

Solution: Call the dimensions x, y, and z. Since the volume is 32 , we have $z=\frac{32}{x y}$. The surface area is given by

$$
A=x y+2(x z+y z)=x y+64\left(\frac{1}{x}+\frac{1}{y}\right)
$$

The gradient of $A(x, y)$ is

$$
\nabla A=\left\langle y-\frac{64}{x^{2}}, x-\frac{64}{y^{2}}\right\rangle
$$

The critical points of A occur when both $y=\frac{64}{x^{2}}$ and $x=\frac{64}{y^{2}}$. Combining the equations gives $x=4$, which then implies that $y=4$ and $z=2$.

