Name:

1. Sketch the domain of the function $f(x,y) = \sqrt{y} + \ln(25 - x^2 - y^2)$.

(Indicate with solid or dashed lines whether the boundary points are included)

2. (5 points) Find $\lim_{(x,y)\to(0,0)} \frac{3y^2\cos^2(x)}{x^2+2y^2}$ if it exists, or show it does not exist.

Solution: Let's try approaching along a generic line y = mx:

$$\lim_{x \to 0} \frac{3(mx)^2 \cos^2(x)}{x^2 + 2(mx)^2} = \lim_{x \to 0} \frac{3m^2 x^2 \cos^2(x)}{x^2 + 2m^2 x^2}$$

$$= \lim_{x \to 0} \frac{3m^2 \cos^2(x)}{1 + 2m^2}$$

$$= \frac{3m^2}{1 + 2m^2} \cdot \lim_{x \to 0} \cos^2(x)$$

$$= \frac{3m^2}{1 + 2m^2}$$

Since this expression depends on m, the limit does not exist.

- 3. Evaluate the double integrals
 - (a) (6 points) $\int_0^1 \int_y^1 e^{-x^2} dx dy$

Solution: Switch the order of integration:

$$\int_{0}^{1} \int_{y}^{1} e^{-x^{2}} dx dy = \int_{0}^{1} \int_{0}^{x} e^{-x^{2}} dy dx$$

$$= \int_{0}^{1} x e^{-x^{2}} dx$$

$$= -\frac{1}{2} \int_{0}^{-1} e^{u} du \qquad (u = -x^{2})$$

$$= \frac{1}{2} \int_{-1}^{0} e^{u} du$$

$$= \frac{1}{2} \left(1 - \frac{1}{e} \right)$$

(b) (6 points)
$$\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} e^{-(x^2+y^2)} dy dx$$

Solution: Change to polar coordinates:

$$\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} e^{-(x^2+y^2)} \, dy \, dx = \int_{0}^{1} \int_{0}^{2\pi} e^{-r^2} r \, d\theta \, dr$$

$$= 2\pi \int_{0}^{1} e^{-r^2} r \, dr$$

$$= -\pi \int_{0}^{-1} e^u \, du \qquad (u = -r^2)$$

$$= \pi \int_{-1}^{0} e^u \, du$$

$$= \pi \left(1 - \frac{1}{e}\right)$$

4. (5 points) Find the length of the curve given by $\vec{r}(t) = \left\langle \frac{2}{3} t^{3/2}, \cos(2t), \sin(2t) \right\rangle$ between t = 0 and t = 5.

Solution:

$$\vec{r}'(t) = \left\langle \sqrt{t}, -2\sin(2t), 2\cos(2t) \right\rangle$$
$$|\vec{r}'(t)| = \sqrt{t+4}$$

So the length of the curve is

$$\int_{0}^{5} \sqrt{t+4} dt = \int_{4}^{9} \sqrt{u} du \qquad (u = t+4)$$

$$= \frac{2}{3} \left[u^{3/2} \right]_{4}^{9}$$

$$= \frac{2}{3} (27 - 8)$$

$$= \frac{38}{3}$$

5. (16 points) Find the area of the part of the surface z - xy = 5 that lies within the cylinder $x^2 + y^2 = 3$.

Solution: Call D the circle of radius $\sqrt{3}$ in the x,y-plane. Then the surface area is

$$\iint_{D} \sqrt{1 + x^{2} + y^{2}} dA = \int_{0}^{\sqrt{3}} \int_{0}^{2\pi} \sqrt{1 + r^{2}} r d\theta dr$$

$$= 2\pi \int_{0}^{\sqrt{3}} \sqrt{1 + r^{2}} r dr$$

$$= \pi \int_{1}^{4} \sqrt{u} du \qquad (u = 1 + r^{2})$$

$$= \frac{2\pi}{3} \left[u^{3/2} \right]_{1}^{4}$$

$$= \frac{2\pi}{3} (8 - 1)$$

$$= \frac{14\pi}{3}$$

6. (12 points) Evaluate $\oint_C \vec{F} \cdot d\vec{r}$, where $\vec{F}(x,y) = \left\langle x^2y, \, xy^2 + \frac{2}{3}x^3 \right\rangle$ and C is the positively oriented circle $x^2 + y^2 = 1$.

Solution: Use **Green's Theorem**:

$$\oint_C \vec{F} \cdot d\vec{r} = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

$$= \iint_D \left(y^2 + 2x^2 - x^2 \right) dA$$

$$= \iint_D \left(y^2 + x^2 \right) dA$$

$$= \int_0^1 \int_0^{2\pi} r^3 d\theta dr$$

$$= 2\pi \int_0^1 r^3 dr$$

$$= \frac{\pi}{2}$$

7. (16 points) Evaluate $\iint_S \vec{F} \cdot d\vec{S}$, where $\vec{F} = \langle x^3, y^3, z^3 \rangle$ and S is the sphere $x^2 + y^2 + z^2 = 1$, oriented outward.

Solution: Use the **Divergence Theorem**:

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iiint_{E} \nabla \cdot \vec{F} \, dV$$

$$= 3 \iiint_{E} (x^2 + y^2 + z^2) \, dV$$

$$= 3 \int_{0}^{1} \int_{0}^{\pi} \int_{0}^{2\pi} \rho^4 \sin(\phi) \, d\theta \, d\phi \, d\rho$$

$$= 6\pi \int_{0}^{1} \int_{0}^{\pi} \rho^4 \sin(\phi) \, d\phi \, d\rho$$

$$= 12\pi \int_{0}^{1} \rho^4 \, d\rho$$

$$= \frac{12\pi}{5}$$

8. (20 points) Find the volume of the solid enclosed by $z=x^2+y^2$ and $z=6-x^2-y^2$.

Solution: The two surfaces meet in a circle of radius $\sqrt{3}$, so the projection D onto the x, y-plane is the disc of radius $\sqrt{3}$. Then the volume is

$$\iint_{D} (6 - 2(x^{2} + y^{2})) dA = 2 \iint_{D} (3 - (x^{2} + y^{2})) dA$$

$$= 2 \int_{0}^{\sqrt{3}} \int_{0}^{2\pi} (3 - r^{2}) r d\theta dr$$

$$= 4\pi \int_{0}^{\sqrt{3}} (3r - r^{3}) dr$$

$$= 4\pi \left(\frac{3}{2} \left[r^{2}\right]_{0}^{\sqrt{3}} - \frac{1}{4} \left[r^{4}\right]_{0}^{\sqrt{3}}\right)$$

$$= 4\pi \left(\frac{9}{2} - \frac{9}{4}\right)$$

$$= 9\pi$$

9. You want to make a cardboard box with no top, and volume 32 cubic inches. What dimensions will give the smallest possible surface area?

Solution: Call the dimensions x, y, and z. Since the volume is 32, we have $z = \frac{32}{xy}$. The surface area is given by

$$A = xy + 2(xz + yz) = xy + 64\left(\frac{1}{x} + \frac{1}{y}\right)$$

The gradient of A(x, y) is

$$\nabla A = \left\langle y - \frac{64}{x^2}, \ x - \frac{64}{y^2} \right\rangle$$

The critical points of A occur when both $y = \frac{64}{x^2}$ and $x = \frac{64}{y^2}$. Combining the equations gives x = 4, which then implies that y = 4 and z = 2.