Name:

\qquad

1. (2 points) Compute the surface integral $\iint_{S} f(x, y, z) d S$ where $f(x, y, z)=z+x^{2} y$, and S is the part of the cylinder $y^{2}+z^{2}=1$ for which $y \geq 0, z \geq 0$, and $0 \leq x \leq 3$.

Solution: Let's parameterize S with a type of cylindrical coordinates where we leave x alone and change y, z to polar:

$$
\vec{r}(x, \theta)=\langle x, \cos (\theta), \sin (\theta)\rangle
$$

Here we'd have $0 \leq x \leq 3$ and $0 \leq \theta \leq \frac{\pi}{2}$. Take derivatives to get

$$
\begin{gathered}
\vec{r}_{x}=\langle 1,0,0\rangle \\
\vec{r}_{\theta}=\langle 0,-\sin (\theta), \cos (\theta)\rangle
\end{gathered}
$$

Take the cross product:

$$
\begin{gathered}
\vec{r}_{x} \times \vec{r}_{\theta}=\langle 0,-\cos (\theta),-\sin (\theta)\rangle \\
\left|\vec{r}_{x} \times \vec{r}_{\theta}\right|=1
\end{gathered}
$$

So the original integral becomes

$$
\begin{aligned}
\iint_{S}\left(z+x^{2} y\right) d S & =\int_{0}^{\pi / 2} \int_{0}^{3}\left(\sin (\theta)+x^{2} \cos (\theta)\right) d x d \theta \\
& =\int_{0}^{\pi / 2}(3 \sin (\theta)+9 \cos (\theta)) d \theta \\
& =-3[\cos (\theta)]_{0}^{\pi / 2}+9[\sin (\theta)]_{0}^{\pi / 2} \\
& =12
\end{aligned}
$$

2. (2 points) Compute the surface integral $\iint \vec{F} \cdot d \vec{S}$, where $\vec{F}(x, y, z)=\left\langle z e^{x y},-3 z e^{x y}, x y\right\rangle$, and S is the parallelogram with vertices $(0,0,1),(1,-1,2),(2,2,5)$, and $(3,1,6)$, with upward orientation.

Choose either part (a) or part (b). You can get a bonus point if you do both.

(a) Compute by thinking of the parallelogram as part of a graph $z=f(x, y)$.

Solution: To use this method, we need to find the equation of the plane which contains the parallelogram. Let's take two edges with a common vertex and write them as vectors. For example, let's take the edges which meet at the vertex $(0,0,1)$. Then the vectors are $\langle 1,-1,1\rangle$ and $\langle 2,2,4\rangle$. The normal vector to the plane is their cross-product:

$$
\langle 1,-1,1\rangle \times\langle 2,2,4\rangle=\langle-6,-2,4\rangle
$$

So the plane is given by the equation $-6 x-2 y+4 z=4$, or we can solve for z to get

$$
z=1+\frac{3}{2} x+\frac{1}{2} y
$$

Our $d \vec{S}$ is given by

$$
d \vec{S}=\left\langle-z_{x},-z_{y}, 1\right\rangle d x d y=\left\langle-\frac{3}{2},-\frac{1}{2}, 1\right\rangle d x d y
$$

Now plug everything in and the integral becomes

$$
\begin{aligned}
\iint_{S} \vec{F} \cdot d \vec{S} & =\iint_{D}\left\langle\left(1+\frac{3}{2} x+\frac{1}{2} y\right) e^{x y},-3\left(1+\frac{3}{2} x+\frac{1}{2} y\right) e^{x y}, x y\right\rangle \cdot\left\langle-\frac{3}{2},-\frac{1}{2}, 1\right\rangle d x d y \\
& =\iint_{D} x y d x d y
\end{aligned}
$$

Here, D is the region in the x, y-plane under the parallelogram. So it is the parallelogram with vertices $(0,0),(1,-1),(2,2)$, and $(3,1)$. Unfortunately, we have to break this into 3 parts: where $0 \leq x \leq 1$, where $1 \leq x \leq 2$, and where $2 \leq x \leq 3$:

$$
\begin{aligned}
\iint_{D} x y d x d y & =\int_{0}^{1} \int_{-x}^{x} x y d y d x+\int_{1}^{2} \int_{x-2}^{x} x y d y d x+\int_{2}^{3} \int_{x-2}^{4-x} x y d y d x \\
& =0+\frac{5}{3}+\frac{7}{3} \\
& =4
\end{aligned}
$$

(b) Compute using the parameterization $\vec{r}(u, v)=\langle u+v, u-v, 1+2 u+v\rangle$ for $0 \leq u \leq 2$, and $0 \leq v \leq 1$.

Solution: Compute the normal vector:

$$
\begin{gathered}
\vec{r}_{u}=\langle 1,1,2\rangle \\
\vec{r}_{v}=\langle 1,-1,1\rangle \\
\vec{r}_{u} \times \vec{r}_{v}=\langle 3,1,-2\rangle
\end{gathered}
$$

We want upward orientation, so we need to use $\vec{r}_{v} \times \vec{r}_{u}=\langle-3,-1,2\rangle$. The surface integral becomes

$$
\begin{aligned}
\iint_{S} \vec{F} \cdot d \vec{S} & =\int_{0}^{1} \int_{0}^{2}\left\langle(1+2 u+v) e^{u^{2}-v^{2}},-3(1+2 u+v) e^{u^{2}-v^{2}}, u^{2}-v^{2}\right\rangle \cdot\langle-3,-1,2\rangle d u d v \\
& =2 \int_{0}^{1} \int_{0}^{2}\left(u^{2}-v^{2}\right) d u d v \\
& =2 \int_{0}^{1}\left(\frac{8}{3}-2 v^{2}\right) d v \\
& =4
\end{aligned}
$$

