Name: \qquad

Clear your desk of everything excepts pens, pencils and erasers.
If you have a question, please raise your hand.

1. (2 points) If C is the boundary of the triangle with vertices $(0,0),(1,0)$, and $(1,1)$, traversed counterclockwise, then what is the value of the line interal $\int_{C}(y \cos (x)+2 y) d x+\sin (x) d y$?

Solution: By Green's Theorem, this line integral is equal to

$$
\begin{aligned}
\iint_{D}\left(\frac{\partial}{\partial x}(\sin (x))-\frac{\partial}{\partial y}(y \cos (x)+2 y)\right) d A & =\iint_{D}(\cos (x)-(\cos (x)+2)) d A \\
& =-2 \iint_{D} d A \\
& =-2 \cdot \operatorname{area}(D)
\end{aligned}
$$

The area of the triangle D is $\frac{1}{2}$, so the value of the integral is -1 .
2. (2 points) Evaluate the integral $\int_{C} 2 x e^{-2 y} d x+\left(10 y-2 x^{2} e^{-2 y}\right) d y$, where C is a path from $(2,0)$ to $(3,2)$.

Solution: Let's check if $\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}$ to see if the field is conservative.

$$
\begin{gathered}
\frac{\partial Q}{\partial x}=\frac{\partial}{\partial x}\left(10 y-2 x^{2} e^{-2 y}\right)=-4 x e^{-2 y} \\
\frac{\partial P}{\partial y}=\frac{\partial}{\partial y}\left(2 x e^{-2 y}\right)=-4 x e^{-2 y}
\end{gathered}
$$

They are the same, so the vector field is conservative. We will try to find a potential function.

$$
f=\int f_{x} d x=\int 2 x e^{-2 y} d x=x^{2} e^{-2 y}+g(y)
$$

Now differentiate with respect to y, and compare with the original vector field:

$$
f_{y}=-2 x e^{-2 y}+g^{\prime}(y)=10 y-2 x^{2} e^{-2 y}
$$

From this, we get that $g^{\prime}(y)=10 y$, and so $g(y)=5 y^{2}+c$ for a constant c. So finally,

$$
f=5 y^{2}+x^{2} e^{-2 y}+c
$$

Now use the fundamental theorem for line integrals:

$$
\begin{aligned}
\int_{C} 2 x e^{-2 y} d x+\left(10 y-2 x e^{-2 y}\right) d y & =\int_{C} \nabla f d \vec{r} \\
& =f(3,2)-f(2,0) \\
& =\left(20+9 e^{-4}\right)-(4) \\
& =16+9 e^{-4}
\end{aligned}
$$

3. (2 points) Evaluate the line integral $\int_{C} \vec{F} \cdot d \vec{r}$, where

$$
\vec{F}(x, y)=\left\langle 2 y+e^{\sqrt{x}}, 3 x+\cos \left(y^{4}\right)\right\rangle
$$

and C follows $y=x^{2}$ from $(-1,1)$ to $(1,1)$, and then follows $y=2-x^{2}$ from $(1,1)$ back to $(-1,1)$:

(Hint: try using Green's Theorem)

Solution: Since this is a closed curve, we can use Green's Theorem. The line integral is equal to

$$
\begin{aligned}
\iint_{D}\left(\frac{\partial}{\partial x}\left(3 x+\cos \left(y^{4}\right)\right)-\frac{\partial}{\partial y}\left(2 y+e^{\sqrt{x}}\right)\right) d A & =\iint_{D}(3-2) d A \\
& =\iint_{D} d A \\
& =\int_{-1}^{1}\left(\left(2-x^{2}\right)-x^{2}\right) d x \\
& =2 \int_{-1}^{1}\left(1-x^{2}\right) d x \\
& =2\left(2-\frac{2}{3}\right) \\
& =4-\frac{4}{3} \\
& =\frac{8}{3}
\end{aligned}
$$

