Name: \qquad

1. (2 points) Compute the line integral $\int_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}(x, y)=\left\langle x y, 3 y^{2}\right\rangle$, and the curve C is parameterized by $\vec{r}(t)=\left\langle 11 t^{4}, t^{3}\right\rangle$ for $0 \leq t \leq 1$.

Solution: First take the derivative:

$$
\vec{r}^{\prime}(t)=\left\langle 44 t^{3}, 3 t^{2}\right\rangle
$$

Then substitute : $\vec{F}=\left\langle x y, 3 y^{2}\right\rangle=\left\langle 11 t^{7}, 3 t^{6}\right\rangle$. Finally,

$$
\begin{aligned}
\int_{C} \vec{F} \cdot d \vec{r} & =\int_{0}^{1}\left\langle 11 t^{7}, 3 t^{6}\right\rangle \cdot\left\langle 44 t^{3}, 3 t^{2}\right\rangle d t \\
& =\int_{0}^{1}\left(484 t^{10}+9 t^{8}\right) d t \\
& =\left(44\left[t^{11}\right]_{0}^{1}+\left[t^{9}\right]_{0}^{1}\right) \\
& =45
\end{aligned}
$$

2. (2 points) Compute the line integral $\int_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}(x, y)=\left\langle 2 x e^{-y}, 2 y-x^{2} e^{-y}\right\rangle$, and C is the upper-left quarter of a circle of radius 1 , centered at $(2,0)$. The curve C can be described by $\vec{r}(t)=\langle 2-\cos (t), \sin (t)\rangle$ for $0 \leq t \leq \frac{\pi}{2}$.

Solution: Let's check whether \vec{F} is conservative.

$$
\begin{gathered}
\frac{\partial Q}{\partial x}=\frac{\partial}{\partial x}\left(2 y-x^{2} e^{-y}\right)=-2 x e^{-y} \\
\frac{\partial P}{\partial y}=\frac{\partial}{\partial y}\left(2 x e^{-y}\right)=-2 x e^{-y}
\end{gathered}
$$

Se we can conclude that yes, \vec{F} is conservative. That means there is some "potential function" f so that $\nabla f=\vec{F}$, and then our integral is just equal to $f(2,1)-f(1,0)$. Now let's find the potential function.

$$
f(x, y)=\int f_{x}(x, y) d x=\int 2 x e^{-y} d x=x^{2} e^{-y}+g(y)
$$

for some function $g(y)$ which depends only on y. Now let's differentiate with respect to y. From what we just got, this should be

$$
f_{y}=-x^{2} e^{-y}+g^{\prime}(y)
$$

On the other hand, since ∇f should be equal to \vec{F}, this should also be

$$
f_{y}=2 y-x^{2} e^{-y}
$$

So we conclude that $g^{\prime}(h)=2 y$, meaning $g(y)=y^{2}$. So we finally get that the potential function is

$$
f(x, y)=y^{2}+x^{2} e^{-y}
$$

Now, by the fundamental theorem for line integrals, we get

$$
\int_{C} \vec{F} \cdot d \vec{r}=\int_{C} \nabla f \cdot d \vec{r}=f(2,1)-f(1,0)=1+\frac{4}{e}-1=\frac{4}{e}
$$

