Name:

Card #: \_\_\_\_

Clear your desk of everything excepts pens, pencils and erasers. Show all your work. If you have a question raise your hand and I will come to you.

- 1. Sketch the graph of  $f(x) = x \sin(-x)$  on the interval  $[-2\pi, 2\pi]$  by following the below steps.
  - (a) (1 point) Determine if there are any asymptotes or if f is even/odd.
    Solution: f is odd, since f(-x) = -x sin(x) = -x + sin(-x) = -f(x).
  - (b) (2 points) Determine where f is increasing, decreasing, and where any local extrema are.Solution: Use the first derivative test:

$$f'(x) = 1 + \cos(-x)$$

Never undefined. So find when 0 to locate crit. pts.

$$0 = 1 + \cos(-x)$$
  

$$-1 = \cos(-x)$$
  

$$x = \{-\pi, \pi\}$$
 (On the interval  $[-2\pi, 2\pi]$ )

Now we plot and take test points to see:

f is increasing on  $[-2\pi, 2\pi]$ , never decreasing, and has no local extrema.

(c) (2 points) Determine where f is concave up, concave down, and where any inflection points are.Solution: Lets look at the second derivative:

$$f''(x) = \sin(-x)$$

Never undefined. So find when 0 to locate potential inflection pts.

$$0 = \sin(-x) x = \{-2\pi, -\pi, 0, \pi, 2\pi\}$$
 (On the interval  $[-2\pi, 2\pi]$ )

Now we plot and take test points to see:

f is concave down on  $(-2\pi, -\pi) \cup (0, \pi)$  and is concave up on  $(-\pi, 0) \cup (\pi, 2\pi)$ . Giving inflection points at  $x = \{-\pi, 0, \pi\}$ .

(d) (2 points) Sketch f on the graph below. Mark all local extrema and inflection points, if any.Solution:



\_\_\_\_\_