Name: _

Section: _____

Clear your desk of everything excepts pens, pencils and erasers. Show all your work. If you have a question raise your hand and I will come to you.

- 1. (1 point) Multiple Choice. Circle the best answer. No partial credit available
 - Evaluate the limit $\lim_{x \to 1} \frac{x^2 + 9x 10}{x^2 x}$
 - **A.** 11
 - B. 10
 - C. -10
 - D. 0/0
 - E. Does not exist or None of the above.

2. (1 point) Fill-in-the-Blank. No partial credit available

(a)
$$\lim_{x \to 1^+} \frac{|1 - x|}{x - 1} = 1$$

(b) $\lim_{x \to 1^-} \frac{|1 - x|}{x - 1} = -1$
(c) $\lim_{x \to 1} \frac{|1 - x|}{x - 1}$ Does not exist

3. (2 points) Prove that $\lim_{x \to 1} (x^2 - 2x) = -1$ using the precise definition of the limit.

Solution: Let $\varepsilon > 0$. We must show that there exists a number δ so that $|(x^2 - 2x) - (-1)| < \varepsilon$ whenever x is in the interval $(1 - \delta, 1 + \delta)$. So let's simplify the ε -inequality algebraically:

$$\begin{aligned} x^2 - 2x + 1 &| < \varepsilon \\ &|(x - 1)^2| < \varepsilon \\ &|x - 1|^2 < \varepsilon \\ &|x - 1| < \sqrt{\epsilon} \end{aligned}$$

This shows that $\delta = \sqrt{\varepsilon}$ will work, because $|x^2 - 2x + 1| < \varepsilon$ if $|x - 1| < \sqrt{\varepsilon}$, which just means that x is in the interval $(1 - \sqrt{\varepsilon}, 1 + \sqrt{\varepsilon})$.