
Example 8.15 Explain why f(x) =


cosx if x < 0

0 if x = 0

1 + sinx if x > 0

is discontinuous at x = 0. Write the largest interval on which f(x)

is continuous.

Solution. The left and right-hand limits (as x→ 0) are both equal to 1, but f(0) = 0.
Since lim

x→0
f(x) 6= f(0), the function is not continuous (by definition).

Example 8.16 Locate the discontinuities of the function f(x) =
2

1− sin(x)
.

Solution. Since 2
x is continuous everywhere except at x = 0, f(x) will be continuous everywhere that 1− sin(x) is not equal

to zero (by Theorem 8.7). If 1− sin(x) = 0, this just means that sin(x) = 1. This happens if x =
π

2
(or this plus a multiple

of 2π). So the points at which f(x) is discontinuous consists of the numbers:

x =
π

2
+ 2πk

for all integers k.

Example 8.17 Show that |x| is continuous everywhere.

Solution. If x > 0, then |x| = x. Since f(x) = x is a polynomial, it is continuous (by Theorem 8.3).
If x < 0, then |x| = −x. Since f(x) = −x is a polynomial, it is continuous.
So we just have to check that |x| is continuous at x = 0. That is, we have to check that:

lim
x→0
|x| = |0| = 0

But since |x| = x when x > 0, we see that lim
x→0+

= 0, and since |x| = −x when x < 0, we see that lim
x→0−

= 0. Since the left and

right limits agree, the two-sided limit exists:
lim
x→0
|x| = 0

This shows that |x| is continuous at zero.

Example 8.19 For what constant c is the function f continuous everywhere?

f(x) =

{
cx2 + 2x if x < 2

x3 − cx if x ≥ 2
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Solution. The function is certainly continuous on (−∞, 2) and on (2,∞), since it is equal to a polynomial on these intervals.
We just need to check at x = 2. The limit as we approach 2 from the left is:

lim
x→2−

f(x) = lim
x→2−

cx2 + 2x = c(2)2 + 2(2) = 4c+ 4

The limit as we approach 2 from the right is:

lim
x→2+

f(x) = lim
x→2+

x3 − cx = (2)3 − c(2) = 8− 2c

In order for f(x) to be continuous at x = 2, we’d need these two one-sided limits to be equal. We can solve algebraically to
see what value of c will make this happen:

4c+ 4 = 8− 2c

6c = 4

c =
2

3

Example 8.20 Prove that the equation sin(x) = x2 − x has at least one solution in the interval (1, 2).

Solution. Let f(x) = sin(x) + x − x2. Then a solution to the equation sin(x) = x2 − x is also a solution to the equation
f(x) = 0. We know the function f(x) is continuous (since sin(x), x, and x2 are all continuous). If we evaluate f at x = 1
and x = 2, we get f(1) = sin(1) and f(2) = sin(2)− 2. Certainly sin(2)− 2 is negative (since the range of the sine function is
[−1, 1]). Converting 1 radian to degrees, we see that 1 radian is 180

π degrees, and so sin(1) will be positive. Then we have the
inequality:

sin(2) ≤ 0 ≤ sin(1)

Then by the Intermediate Value Theorem, the equation f(x) = 0 has a solution in the interval [1, 2].

Example 8.21 Prove that the equation cos(x) = x3 has at least one solution. What interval is it in?

Solution. Let f(x) = cos(x)− x3. Then solutions to cos(x) = x3 will also be solutions to f(x) = 0. Notice that f(0) = 1. So
if we can find a number c so that f(c) ≤ 0, then we’d have that f(c) ≤ 0 ≤ f(0), and so the Intermediate Value Theorem
will tell us that f(x) = 0 has a solution in between 0 and c. In fact, c = 1 will work, since (1)3 = 1, and cos(1) ≤ 1. So the
solution to cos(x) = x3 is in the interval [0, 1].
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