Example 8.15 Explain why $f(x) = \begin{cases} \cos x & \text{if } x < 0 \\ 0 & \text{if } x = 0 \text{ is discontinuous at } x = 0. \end{cases}$ Write the largest interval on which $f(x) = \begin{cases} 1 + \sin x & \text{if } x > 0 \end{cases}$

is continuous.

Solution. The left and right-hand limits (as $x \to 0$) are both equal to 1, but f(0) = 0. Since $\lim_{x\to 0} f(x) \neq f(0)$, the function is not continuous (by definition).

Example 8.16 Locate the discontinuities of the function $f(x) = \frac{2}{1 - \sin(x)}$.

Solution. Since $\frac{2}{x}$ is continuous everywhere except at x = 0, f(x) will be continuous everywhere that $1 - \sin(x)$ is not equal to zero (by **Theorem 8.7**). If $1 - \sin(x) = 0$, this just means that $\sin(x) = 1$. This happens if $x = \frac{\pi}{2}$ (or this plus a multiple of 2π). So the points at which f(x) is discontinuous consists of the numbers:

$$x = \frac{\pi}{2} + 2\pi k$$

for all integers k.

Example 8.17 Show that |x| is continuous everywhere.

Solution. If x > 0, then |x| = x. Since f(x) = x is a polynomial, it is continuous (by **Theorem 8.3**). If x < 0, then |x| = -x. Since f(x) = -x is a polynomial, it is continuous. So we just have to check that |x| is continuous at x = 0. That is, we have to check that:

$$\lim_{x \to 0} |x| = |0| = 0$$

But since |x| = x when x > 0, we see that $\lim_{x \to 0^+} = 0$, and since |x| = -x when x < 0, we see that $\lim_{x \to 0^-} = 0$. Since the left and right limits agree, the two-sided limit exists:

$$\lim_{x \to 0} |x| = 0$$

This shows that |x| is continuous at zero.

Example 8.19 For what constant c is the function f continuous everywhere?

$$f(x) = \begin{cases} cx^2 + 2x & \text{if } x < 2\\ x^3 - cx & \text{if } x \ge 2 \end{cases}$$

Solution. The function is certainly continuous on $(-\infty, 2)$ and on $(2, \infty)$, since it is equal to a polynomial on these intervals. We just need to check at x = 2. The limit as we approach 2 from the left is:

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} cx^2 + 2x = c(2)^2 + 2(2) = 4c + 4$$

The limit as we approach 2 from the right is:

$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} x^3 - cx = (2)^3 - c(2) = 8 - 2c$$

In order for f(x) to be continuous at x = 2, we'd need these two one-sided limits to be equal. We can solve algebraically to see what value of c will make this happen:

$$4c + 4 = 8 - 2c$$
$$6c = 4$$
$$c = \frac{2}{3}$$

Example 8.20 Prove that the equation $sin(x) = x^2 - x$ has at least one solution in the interval (1,2).

Solution. Let $f(x) = \sin(x) + x - x^2$. Then a solution to the equation $\sin(x) = x^2 - x$ is also a solution to the equation f(x) = 0. We know the function f(x) is continuous (since $\sin(x)$, x, and x^2 are all continuous). If we evaluate f at x = 1 and x = 2, we get $f(1) = \sin(1)$ and $f(2) = \sin(2) - 2$. Certainly $\sin(2) - 2$ is negative (since the range of the sine function is [-1, 1]). Converting 1 radian to degrees, we see that 1 radian is $\frac{180}{\pi}$ degrees, and so $\sin(1)$ will be positive. Then we have the inequality:

$$\sin(2) \le 0 \le \sin(1)$$

Then by the Intermediate Value Theorem, the equation f(x) = 0 has a solution in the interval [1, 2].

Example 8.21 Prove that the equation $cos(x) = x^3$ has at least one solution. What interval is it in?

Solution. Let $f(x) = \cos(x) - x^3$. Then solutions to $\cos(x) = x^3$ will also be solutions to f(x) = 0. Notice that f(0) = 1. So if we can find a number c so that $f(c) \le 0$, then we'd have that $f(c) \le 0 \le f(0)$, and so the **Intermediate Value Theorem** will tell us that f(x) = 0 has a solution in between 0 and c. In fact, c = 1 will work, since $(1)^3 = 1$, and $\cos(1) \le 1$. So the solution to $\cos(x) = x^3$ is in the interval [0, 1].