Example 8.15 Explain why $f(x)= \begin{cases}\cos x & \text { if } x<0 \\ 0 & \text { if } x=0 \text { is discontinuous at } x=0 \text {. Write the largest interval on which } f(x) \\ 1+\sin x & \text { if } x>0\end{cases}$ is continuous.

Solution. The left and right-hand limits (as $x \rightarrow 0$) are both equal to 1 , but $f(0)=0$.
Since $\lim _{x \rightarrow 0} f(x) \neq f(0)$, the function is not continuous (by definition).

Example 8.16 Locate the discontinuities of the function $f(x)=\frac{2}{1-\sin (x)}$.
Solution. Since $\frac{2}{x}$ is continuous everywhere except at $x=0, f(x)$ will be continuous everywhere that $1-\sin (x)$ is not equal to zero (by Theorem 8.7). If $1-\sin (x)=0$, this just means that $\sin (x)=1$. This happens if $x=\frac{\pi}{2}$ (or this plus a multiple of $2 \pi)$. So the points at which $f(x)$ is discontinuous consists of the numbers:

$$
x=\frac{\pi}{2}+2 \pi k
$$

for all integers k.

Example 8.17 Show that $|x|$ is continuous everywhere.
Solution. If $x>0$, then $|x|=x$. Since $f(x)=x$ is a polynomial, it is continuous (by Theorem 8.3).
If $x<0$, then $|x|=-x$. Since $f(x)=-x$ is a polynomial, it is continuous.
So we just have to check that $|x|$ is continuous at $x=0$. That is, we have to check that:

$$
\lim _{x \rightarrow 0}|x|=|0|=0
$$

But since $|x|=x$ when $x>0$, we see that $\lim _{x \rightarrow 0^{+}}=0$, and since $|x|=-x$ when $x<0$, we see that $\lim _{x \rightarrow 0^{-}}=0$. Since the left and right limits agree, the two-sided limit exists:

$$
\lim _{x \rightarrow 0}|x|=0
$$

This shows that $|x|$ is continuous at zero.

Example 8.19 For what constant c is the function f continuous everywhere?

$$
f(x)= \begin{cases}c x^{2}+2 x & \text { if } x<2 \\ x^{3}-c x & \text { if } x \geq 2\end{cases}
$$

Solution. The function is certainly continuous on $(-\infty, 2)$ and on $(2, \infty)$, since it is equal to a polynomial on these intervals. We just need to check at $x=2$. The limit as we approach 2 from the left is:

$$
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} c x^{2}+2 x=c(2)^{2}+2(2)=4 c+4
$$

The limit as we approach 2 from the right is:

$$
\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} x^{3}-c x=(2)^{3}-c(2)=8-2 c
$$

In order for $f(x)$ to be continuous at $x=2$, we'd need these two one-sided limits to be equal. We can solve algebraically to see what value of c will make this happen:

$$
\begin{aligned}
4 c+4 & =8-2 c \\
6 c & =4 \\
c & =\frac{2}{3}
\end{aligned}
$$

Example 8.20 Prove that the equation $\sin (x)=x^{2}-x$ has at least one solution in the interval $(1,2)$.
Solution. Let $f(x)=\sin (x)+x-x^{2}$. Then a solution to the equation $\sin (x)=x^{2}-x$ is also a solution to the equation $f(x)=0$. We know the function $f(x)$ is continuous (since $\sin (x), x$, and x^{2} are all continuous). If we evaluate f at $x=1$ and $x=2$, we get $f(1)=\sin (1)$ and $f(2)=\sin (2)-2$. Certainly $\sin (2)-2$ is negative (since the range of the sine function is $[-1,1])$. Converting 1 radian to degrees, we see that 1 radian is $\frac{180}{\pi}$ degrees, and so $\sin (1)$ will be positive. Then we have the inequality:

$$
\sin (2) \leq 0 \leq \sin (1)
$$

Then by the Intermediate Value Theorem, the equation $f(x)=0$ has a solution in the interval $[1,2]$.

Example 8.21 Prove that the equation $\cos (x)=x^{3}$ has at least one solution. What interval is it in?
Solution. Let $f(x)=\cos (x)-x^{3}$. Then solutions to $\cos (x)=x^{3}$ will also be solutions to $f(x)=0$. Notice that $f(0)=1$. So if we can find a number c so that $f(c) \leq 0$, then we'd have that $f(c) \leq 0 \leq f(0)$, and so the Intermediate Value Theorem will tell us that $f(x)=0$ has a solution in between 0 and c. In fact, $c=1$ will work, since $(1)^{3}=1$, and $\cos (1) \leq 1$. So the solution to $\cos (x)=x^{3}$ is in the interval $[0,1]$.

