Example 7.10 If $4x - 9 \le f(x) \le x^2 - 4x + 7$ for $x \ge 0$, find $\lim_{x \to 4} f(x)$.

Solution: Since $\lim_{x \to 4} 4x - 9$ and $\lim_{x \to 4} (x^2 - 4x + 7)$ are both equal to 7, and we already know that $4x - 9 \le f(x) \le x^2 - 4x + 7$, we can use the **Squeeze Theorem** to say that $\lim_{x \to 4} f(x) = 7$, as well.

Example 7.11 Find $\lim_{x\to 0} x^4 \cos\left(-\frac{1}{x}\right)$.

Since
$$\cos\left(-\frac{1}{x}\right)$$
 is always between -1 and 1, we know that
 $-x^4 \le x^4 \cos\left(-\frac{1}{x}\right) \le x^4$
Since $\lim_{x \to 0} x^4$ and $\lim_{x \to 0} (-x^4)$ are both zero, so is $\lim_{x \to 0} x^4 \cos\left(-\frac{1}{x}\right)$, by the **Squeeze Theorem**.

Example 7.12 Prove that $\lim_{x\to 2} (5-x) = 3$, using the formal definition of a limit.

We have to show that for any positive number ε , we can find another positive number δ , so that $|(5-x)-3| < \varepsilon$ as long as $|x-2| < \delta$. We do this by taking the first inequality, and trying to solve it:

$$\begin{split} |(5-x)-3| < \varepsilon \\ |2-x| < \varepsilon \\ |x-2| < \varepsilon \end{split}$$

This tells us that as long as x is within a distance ε of 2, 5 - x will be within a distance ε of 3. So we can use $\delta = \varepsilon$ in the proof.

Example 7.13 Prove that $\lim_{x \to a} c = c$ and that $\lim_{x \to a} x = a$ using the definition of the limit.

First let's prove that $\lim_{x\to a} c = c$. In other words, the limit of a constant is the constant, no matter which point we are taking the limit to. We need to show that for any $\varepsilon > 0$, we can find a $\delta > 0$ so that $|c-c| < \varepsilon$. But since c - c = 0, this just says that $0 < \varepsilon$, which we already know. This is always true, without imposing any restrictions on x. So in fact, any choice of δ would work in this case (even if it's not small). Next let's show that $\lim_{x\to a} x = a$. We need to show that for any $\varepsilon > 0$, there is a $\delta > 0$ so that

 $|x-a| < \varepsilon$ whenever $|x-a| < \delta$. But we see that we can obviously just pick $\delta = \varepsilon$, and it will work.