3 The Fundamental Theorem of Calculus

Theorem 3.1 (FTC, Part 1). If f is continuous on [a, b], then the function g defined by

$$g(x) = \int_{a}^{x} f(t) dt, \qquad a \le x \le b$$

is continuous on [a, b] and differentiable on (a, b), and g'(x) = f(x)

Remark 3.2. Here is an idea of the proof:

Theorem 3.3 (FTC, Part 2). If f is continuous on [a, b], then

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a)$$

where F is any antiderivative of f, that is, a function such that F' = f.

Remark 3.4. Here is an idea of the proof:

Remark 3.5. The two parts of the FTC together state that differentiation and integration are inverse processes.

Remark 3.6. From our perspective **FTC**, **Part 2** is the most important because it allows us to calculate definite integrals without having to take limits of Riemann sums!

~

Example 3.7 (Instructor). Evaluate the following integrals

(a)
$$\int_{1}^{9} \sqrt{x} \, dx$$

(b) $\int_{-1}^{5} (u+1)(u-2) \, dt$
(c) $\int_{1}^{2} \frac{x^{4}+1}{x^{2}} \, dx$
(d) $\int_{-1}^{2} |x| \, dx$

Example 3.8 (Instructor). Find the derivatives of the following functions:

(a)
$$f(x) = \int_{1}^{x} t^{2} dt$$

(b) $g(x) = \int_{x}^{2} \sqrt{t^{2} + 3} dt$
(c) $h(x) = \int_{3x}^{2x} \frac{u^{2} - 1}{u^{2} + 1} du$

Example 3.9 (Student). Evaluate the following integrals

(a)
$$\int_{1}^{8} \frac{1}{\sqrt[3]{x^2}} dx$$

(b) $\int_{0}^{\pi/3} \sin \theta \, d\theta$
(c) $\int_{-2}^{2} f(x) \, dx$ where $f(x) = \begin{cases} 2 & \text{if } -2 \le x \le 0 \\ 4 - x^2 & \text{if } 0 < x \le 2 \end{cases}$
(d) $\int_{-1}^{5} |3x - 6| \, dx$

Example 3.10 (Student). Identify what is wrong with the evaluation:

$$\int_{-1}^{1} \frac{1}{x^2} dx = \left[-x^{-1}\right]_{-1}^{1}$$
$$= \left[-(1)^{-1} + (-1)^{-1}\right] = \left[-1 - 1\right] = -2$$

Example 3.11 (Student). Find the derivatives of the following functions:

(a)
$$F(x) = \int_{2}^{1/x} \sin^{4} t \, dt$$

(b) $G(x) = \int_{\sin x}^{1} \cos^{2} \theta \, d\theta$
(c) $H(x) = \int_{\tan x}^{x^{2}} \frac{1}{\sqrt{2 + t^{4}}} \, dt$