1 Derivatives and Rates of Change

Remark 1.2.

Definition(s) 1.1.

The **derivative of a function** f at a number c, denoted by f'(c), is the number

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h},$$

if the limit exists. An equivalent formulation is

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

The tangent line to the graph of y = f(x) at the point $\begin{pmatrix} c, f(c) \end{pmatrix}$ is the line through (c, f(c)) whose slope is equal to f'(c).

Example 1.3.

If f(t) measures distance of a moving object, and t is time, then the **velocity** (or **instantaneous velocity**) of the moving object, denoted v(t), is the limit of the average velocities (as defined in **Section 1.4**).

$$v(t) = \lim_{s \to t} \frac{f(s) - f(t)}{s - t}$$

2 The Derivative as a Function

Definition(s) 2.1.

The **derivative of a function** f, denoted by f', is the function $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$. Another common notation is to write $\frac{df}{dx}$ or $\frac{d}{dx}f(x)$ instead of f'(x). The derivative at x = c in this notation is written $\frac{df}{dx}\Big|_{x=c}$.

Definition(s) 2.2.

A function f is differentiable at c if f'(c) exists. It is differentiable on the interval (a, b) if it is differentiable at every number in (a, b).

Theorem 2.3.

If f is differentiable at c, then f is continuous at c.

How Can a Function Fail to be Differentiable (at a point c)?

• f is discontinuous at c

•
$$\lim_{h \to 0^-} \frac{f(x+h) - f(x)}{h} \neq \lim_{h \to 0^+} \frac{f(x+h) - f(x)}{h}$$

•
$$\lim_{x \to c} |f'(x)| = \infty$$

Definition(s) 2.4.

The second derivative of f is the derivative of f'(x), denoted by f''(x) or $\frac{d^2f}{x^2}$. In general, the nth derivative, denoted by $f^{(n)}(x)$ or $\frac{d^n f}{dx^n}$, is the derivative of $f^{(n-1)}(x)$.

Example 2.5.

If f(t) measures distance of a moving object, then the **acceleration** of the object, a(t), is the second derivative of f, and the first derivative of the velocity, v(t).

Example 2.6 (Instructor).

Compute (using the limit definition) the derivative of the following functions:

(a)
$$f(x) = x^2 + 3x + 7$$

(b)
$$f(x) = \frac{-}{x}$$

(c) $f(x) = \sqrt{x}$

Example 2.7 (Instructor).

Explain why f(x) = |x| is not differentiable at x = 0.

Example 2.8 (Instructor).

Are the following functions differentiable at x = 2? Why or why not?

(a)
$$f(x) = \begin{cases} x & \text{if } x \le 2\\ 3 & \text{if } x > 2 \end{cases}$$

(b) $f(x) = \begin{cases} x^2 & \text{if } x < 2\\ 4x - 4 & \text{if } x \ge 2 \end{cases}$
(c) $f(x) = \begin{cases} x^2 & \text{if } x < 2\\ 4 & \text{if } x \ge 2 \end{cases}$

Example 2.9 (Student).

Compute (using the limit definition) the derivative of the following functions:

(a)
$$f(x) = 3x^2 + x - 8$$

(b) $f(x) = \frac{5}{x - 3}$
(c) $f(x) = \frac{1}{x^2}$

Example 2.10 (Student).

Is the function $f(x) = \begin{cases} 2x+1 & \text{if } x < 0 \\ x^2+1 & \text{if } x \ge 0 \end{cases}$ differentiable at x = 0? Why or why not?

Example 2.11 (Student).

Assuming a function f(x) is differentiable at x = c, come up with a general equation for the tangent line to f at c.

Example 2.12 (Student).

The graph of a function f(x) is shown on the left. Use it to sketch a graph of f'(x).

y'	
	 \xrightarrow{x}