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My research is mainly in the area of combinatorics, and particularly what are called dimer models. This is the study
of enumeration of perfect matchings of a graph, and associated probability measures on the set of perfect matchings.
I study various ways in which dimer models relate to other topics, such as combinatorics, algebra, representation
theory, symplectic and Poisson geometry, integrable systems, mathematical physics, and statistical mechanics. My
work is closely related to cluster algebras, and various algebraic and geometric objects which have a cluster algebra
structure, such as Grassmannians, Teichmiiller spaces, rings of invariants of algebraic groups, and various integrable
dynamical systems.

Below, I will first briefly describe the setup of the dimer model, and then mention some of my published results
involving dimer models, their generalizations, and their appearance in different areas (particularly those related to
cluster algebras). Throughout, I will mention some current ongoing work, and possible future plans.

Dimer Models

Given a bipartite planar graph G, the dimer model on G is the study of random perfect matchings of G. A perfect
matching (also called a dimer cover) is a subset of edges of the graph such that every vertex is incident to exactly one
edge. An example of a perfect matching is pictured below, on the left (the edges of the matching are in red):
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Suppose the edges of G are weighted by positive real numbers. The primary enumerative quantity in the dimer

model is the partition function
Z = Z wt(M)
dimer cover M

where wt(M) is the product of the edge weights occuring in M. It was shown by Kasteleyn in the ‘60s [Kas63]
that the partition function is the determinant of a modified version of the adjacency matrix of the graph (which we
now call the Kasteleyn matrix, K). This matrix also allows to compute certain probabilistic quantities, such as the
probability of a certain edge appearing in a random dimer cover.

Higher Dimer Models

Informally, an n-dimer cover is the result of superimposing n perfect matchings. More technically, it is a multiset of
edges such that every vertex is incident to n edges. Examples for n = 2 and n = 3 are pictued in the middle and right
of the above figure. Some of my recent work has focused on different types of n-dimer models, and their relations
to various topics such as representation theory, lattice models in statistical mechanics, cluster superalgebras, and
higher-dimensional continued fractions. I will present a few of these results below.

In recent work with Richard Kenyon, we considered mixed dimer models, which are even more general than
n-dimer models. In this model, every vertex v of a graph is assigned an integer n,, and we consider multisets of
edges such that each v is incident to n,, edges. The n-dimer model is the special case where all vertices are assigned
the same value n. Also, as part of the data, each edge with endpoints b and w is labelled by an n,, x n; matrix and
these matrices are used to define the weights/probabilities in the model. When all vertex multiplicities are the same



value n, this data is equivalent to a GL,,-local system (which is a GL,,-representation of the fundamental group of
the graph). We call these probability measures on n-dimer covers higher rank dimer models or the GL,,-dimer model.
We showed that a version of Kasteleyn’s theorem is true in this setting:

Theorem 1 (Kenyon, Ovenhouse [KO23]). There is a matrix K (which is a block matrix analog of the usual Kasteleyn
matrix) such that the partition function of the mixed dimer model is given by Z = |det(K)|.

There is a theorem of Kenyon which says that in the single dimer model, the probability that a given edge appears
in a random dimer cover is given by an entry of the inverse Kasteleyn matrix. It is also possible to express the
covariance between different edge probabilities directly in terms of the inverse Kasteleyn matrix. In current ongoing
work with a group of graduate students, which began at a research workshop at the University of Minnesota, we
are also able to give analogous formulas in the higher rank dimer models in terms of the block Kasteleyn matrix
mentioned in Theorem 1.

It is a simple observation that many lattice models in statistical mechanics (such as the “free fermionic” 6-vertex
and 20-vertex models) are equivalent to certain mixed dimer models. For instance, the 6-vertex model on a 3 x 3
grid with domain wall boundary conditions is equivalent to a mixed dimer model on the graph pictured below, where
black vertices have degree 2 and white vertices have degree 1. In the picture, an example configuration is given by

the red edges.

As such, our result gives a new way of seeing that their partition functions are determinantal for certain choices
of weights. The second main result in the aforementioned work is that to each n-dimer model or mixed dimer model
on a graph G, there exists another edge-weighted planar graph G whose single-dimer model is equivalent to the
n-dimer or mixed dimer model on the original graph. The graph G is obtained from G by replacing each vertex with
some graph, and replacing each edge of G by several parallel edges.

Theorem 2 (Kenyon, Ovenhouse [KO23]). There is a many-to-one weight preserving map from single dimer covers of
G to n-dimer covers (or mixed dimer covers) of G with a matrix connection. This means the weight of a mixed dimer
cover of G is equal to the sum of the weights of all single dimer covers of G which are its pre-images.

This result allows questions about mixed dimer models to be translated to questions about single dimer models,
which are more well-understood. It also relates the GL,,-dimer models to certain cluster algebra structures, as the
details of passing from G to G involve the cluster parameterization of the totally positive Grassmannian.

Consider the following Deligne-Simpson problem: find matrices A and B, such that A, B, and AB have certain
precscribed eigenvalues. In [KO24], Rick Kenyon and I used these ideas (coming from Thorem 2) to give a cluster-like
parameterization of the set of solutions to this problem. We found a certain honeycomb graph drawn on the torus
such that the solution space of the Deligne-Simpson problem can be identified with the space of edge weights of this
graph.

I am also working on a project with Rick Kenyon, Dan Douglas, Sam Panitch, and Sri Tata involving a quantum
version of the GL,,-dimer model. It is a generalization of the quantum SL,,-invariants coming from webs. Webs are
planar graphs which encode fundamenal SL,,-invariant functions on certain representations. We are able to write
the quantum partition function of this model as an expression which is similar to the (quantum) determinant of the
associated Kasteleyn matrix. In the case n = 2, we are also able to extract certain combinatorial statistics in the
double-dimer model using the quantum version.

Cluster Superalgebras and Teichmiiller Theory

The decorated Teichmiiller space of a bordered, punctured surface is the parameter space of hyperbolic structures on
that surface. It has coordinate charts corresponding to ideal triangulations, with coordinates given by “A-lengths”,



which are the lengths of truncated geodesics. Choosing a different triangulation gives a change-of-coordinate map,
which is a mutation in a suitably-defined cluster algebra. The expressions for the new coordinates, in terms of the
old, are given by partition functions of a dimer model on a certain planar graph.

For a simpler Euclidean (as opposed to hyperbolic) example, consider a pentagon inscribed in a circle, with a
chosen triangulation, as in the figure below. The edge labels are the lengths.
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By using Ptolemy’s theorem, the length of the blue diagonal can be expressed as 2<“F942+bey the numerator of

which is the weighted sum of all three dimer covers of the graph pictured in the right of the figure.

For a surface S and a Lie group G, the higher Teichmiiller space is the space of G-representations of the fun-
damental group of S (up to equivalence). With co-authors Gregg Musiker and Sylvester Zhang, we studied the
higher Teichmiiller space for the ortho-symplectic Lie supergroup Osp(1|2), and we proved an extension of the fact
mentioned above, which establishes a version of the celebrated Laurent phenomenon for these cluster superalgebras.

Theorem 3 (Musiker, Ovenhouse, Zhang [MOZ22]). Given two coordinate charts on the decorated super Teichmiiller
space of a marked disk, the even coordinates in the new chart, when expressed in terms of the old coordinates, are given
by partition functions for a double dimer model on a certain planar graph. In particular, the super cluster mutations
obey a Laurent phenomenon analogous to ordinary cluster algebras.

Integrable Systems from Dimer Models

A dynamical system is integrable if it preserves some symplectic/Poisson structure, and admits sufficiently many
conserved quantities. Goncharov and Kenyon introduced a class of integrable systems coming from the dimer model
of graphs drawn on a torus. In these models, the conserved quantities (called the Hamiltonians) are the weighted
sums of dimer covers corresponding to a fixed homology class on the torus.

With Semeon Arthamonov and Michael Shapiro, we studied a noncommutative version of these systems, and
demonstrated their integrability by proving a noncommutative analog of the R-matrix formula for the Poisson brack-
ets (R-matrices are a ubiquitous tool in the theory of integrable systems).

Theorem 4 (Arthamonov, Ovenhouse, Shapiro [AOS24]). For a graph drawn on a torus, the noncommutative Poisson
structure is given by a suitable generalization of the classical R-matrix formula:

{M(A), M(p)} = [M(A) @ M(p), R, p)]

From this, it can be shown that the (noncommutative analogs of the) dimer partition functions Poisson-commute, forming
an integrable system.

The main utility of the noncommutative Poisson structures is that they induce ordinary Poisson structures on
character varieties (i.e. higher Teichmiiller spaces). As a corollary of our result, we thus conclude that the dimer
integrable systems lift to integrable systems on the higher rank GL,,-dimer models.

A fun and interesting application of these results is given by a generalization of the pentagram map. The penta-
gram map is a dynamical system on the space of polygons drawn in the plane, given by a very elementary construc-
tion. One draws all “short diagonals” (connecting vertices with distance 2), and the image of the map is the smaller
polygon formed by the intersections of these diagonals. An illustration is given below:



The pentagram map is known to be integrable. Since its introduction, many generalizations have been studied,
some integrable and some not. One particular generalization (introduced by Felipe and Mari-Beffa) has the polygons
living in a Grassmannian manifold. In my PhD thesis [Ove20], I related this Grassmannian pentagram map to the
noncommutative dimer integrable systems mentioned above, and showed its integrability via early verions of the
results from [AOS24].

Higher Continued Fractions and Dimer Models

The planar graphs mentioned in Theorem 3 are what are called “snake graphs”, which are equivalently certain kinds
of skew Young diagrams called “border strips” or “ribbons”. They consist of a sequence of square faces, each attached
to the previous on either the right or top edge.

Inspired by Theorem 3, we considered the purely combinatorial problem of counting n-dimer covers on snake
graphs. From the n = 1 case, it was known that there is an association between snake graphs and continued
fractions. A rational number x = [ay,as,...,a,] determines a snake graph G, (whose shape is related to the
integers ay, . .., ay). A theorem of Shiffler and Canakci says that if ' = [ag, a3, . .., a,], then

# of perfect matchings of G,

~ # of perfect matchings of G,/

For a given n, let A be the (n + 1) X (n + 1) upper-triangular matrix where all entries on or above the diagonal are
equal to 1, and let B := AT. Then we have the following.

Theorem 5 (Musiker, Ovenhouse, Schiffler, Zhang [MOSZ23]). Let G, be a snake graph with associated continued
fraction x = [ay, ag, . .., asi], and let M be the matrix

M = AalBaQAa3Ba4 . Aa2k_1Ba2k
Then the upper-left entry M1 is the number of n-dimer covers of G 5.

We also gave combinatorial interpretations for all entries of the matrix M, and we gave bijections between 7-
dimer covers and other classical combinatorial objects such as north-east lattice paths, order ideals of posets, and
plane partitions or P-partitions.

This led us to define certain types of higher continued fractions which are related to n-dimer models in an anal-
ogous way. In particular, for each positive integer m, and each i < m, we defined a higher continued fraction map
7i.m: Q — Q such that
# of m-dimer covers of G,

r )=
m.m () # of m-dimer covers of G

with similar interpretations for the other r; ,,, with i < m. We showed that these higher continued fraction values
have a recursive formula generalizing the usual reccurence for ordinary continued fractions.
A pleasant property of these higher continued fractions is that the definition extends to irrational values as well.

Theorem 6 (Musiker, Ovenhouse, Schiffler, Zhang [MOSZ23)). If x is an irrational number with infinite continued
fraction x = [a1,a2,as,...], and x, = [a1,...,ay] are its rational approximations, then the limits lim r; ,,,(xy,)
n—oo

exist for all i, m. Furthermore, if x is a quadratic irrational (i.e. its continued fraction is eventually periodic), then
Ti.m () is an algebraic number of degree m + 1.



The continued fractions of quadratic irrationals are eventually periodic integer sequences. Hermite’s problem asks
whether it is possible to encode real numbers by integer sequences (similar to the continued fraction expansion) such
that a number is a cubic irrational precisely when its corresponding sequence is eventually periodic. Our theorem
above says that the m-continued fraction encoding maps eventually perioidic sequences to degree m + 1 algebraic
numbers. It is an interesting open problem to explore whether the converse is true: Does the m-continued fraction
of every algebraic number give an eventually periodic sequence?

I will also mention that these higher continued fractions have led to some successful research projects with
undergraduates. In particular, two undergraduates at Yale helped me investigate some unanswered questions from
our original paper:

Theorem 7 (Basser, Ovenhouse, Sakarda [BOS24]). The higher continued fraction mapsr; ,: Ry — R, are contin-
uous and monotone increasing.

I will conclude this section by mentioning some interesting work-in-progress on this topic. Together with An-
drew Claussen, we are investigating the enumeration of mixed dimer covers on snake graphs, where different vertices
have different degrees. In some natural simple cases, we have discovered some remarkable appearances of famous
combinatorial sequences, including the Euler and Catalan numbers. In particular, we are considering the straight
and zigzag snake graphs (with shapes RRR--- and URUR - - -), with vertices of multiplicities 1,2, 3,4, ..., from
left-to-right. We then have the following.

Theorem 8 (Claussen, Ovenhouse).

(a) The number of mixed dimer covers on the straight snake graph with n — 2 squares is the euler number E,, (the
number of alternating permutations in S, ).

(b) The number of mixed dimer covers on the zigzag snake graph withn — 1 squares is the Catalan number C,,.

Moreover, we have explicit bijections between mixed dimer covers and the corresponding sets of permutations,
such that the partial order on mixed dimer covers maps to a partial order on permutations which is a coarsening of
the Bruhat order on the symmetric group.
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