
work has dealt with the existence of a differentiable
conjugacy between a diffeomorphism f with irrational
rotation number � and R�. Arnol, Moser, and Herman
have obtained results (see Melo and Strien (1993) for a
discussion of this results and references).
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Introduction

Homoclinic orbits (or motions) were first defined by
Poincaré in his treatise on the ‘‘restricted three-body
problem.’’ (Poincaré 1987) Further advances were
made by Birkhoff (Birkhoff 1960) in the 1930s, and,
by Smale in the 1960s. Since that time, they have been
studied by many people and have been shown to be
intimately related to our understanding of nonlinear
dynamical systems. There are many systems which
possess homoclinic orbits. In one striking example (as
discussed in the book of Moser (1973), they can be
used to account for the unbounded oscillatory motion
discovered by Sitnikov in the three-body problem. They
also commonly occur in two-dimensional mappings
derived from periodically forced oscillations (e.g., see
the book by Guckenheimer and Holmes (1983).

Roughly speaking, a homoclinic orbit is an orbit
of a mapping or differential equation which is both
forward and backward asymptotic to a periodic
orbit which satisfies a certain nondegeneracy condi-
tion called ‘‘hyperbolicity.’’ On its own, such an
orbit is only of mild interest. However, these orbits
induce quite interesting structures among nearby
orbits, and this latter fact is responsible for the main
importance of homoclinic orbits. In addition, when
homoclinic orbits are created in a parametrized
system, many interesting and unexpected phenom-
ena arise.

In this article, we first describe the history and
basic properties of homoclinic orbits. Next, we
consider some simple polynomial diffeomorphisms
of the plane (the so-called Hénon family) which
exhibit homoclinic orbits. Subsequently, we discuss
a general theorem due to Katok which gives
sufficient conditions for the existence of such
orbits. Finally, we briefly consider issues related to
homoclinic bifurcations and some of their
consequences.
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Homoclinic Orbits in Diffeomorphisms

Consider a discrete dynamical system given by a Cr

diffeomorphism f : M!M where M is a C1 mani-
fold and r is a positive integer. That is, f is bijective
and both f and f�1 are r-times continuously
differentiable. Given a point x2M, set x0 = x. For
non-negative integers n we inductively define
xnþ1 = f (xn) and x�n�1 = f�1(x�n). We also write
f n(x) = xn for n in the set Z of all integers. The
‘‘orbit’’ of x is the set O(x) = {f n(x): n2Z}.

A ‘‘periodic point’’ p of f is a point such that there
is a positive integer N > 0 such that f N(p) = p. The
least such number �(p) is called the ‘‘period’’ of p. If
�(p) = 1, we call p a ‘‘fixed point.’’ The periodic
point p with period � is called called ‘‘hyperbolic’’ if
all eigenvalues of the derivative Df � (p) at p have
absolute value different from 1. For convenience, we
refer to the eigenvalues of Df � (p) as eigenvalues
associated to p. If p is a hyperbolic periodic point all
of whose associated eigenvalues have norm less than
one, we call p a ‘‘sink’’ or ‘‘attracting periodic
point.’’ The opposite case in which all associated
eigenvalues have norm larger than one is called a
‘‘source.’’ A hyperbolic periodic point p which is
neither a source nor a sink is called a ‘‘saddle’’ or
‘‘hyperbolic saddle.’’

Given a saddle p of period � , we consider the set
Ws(p) = Ws(p, f ) of points y2M which are forward
asymptotic to p under the iterates f n� . That is, the
points y2M such that f n� (y)! p as n!1. This is
called the ‘‘stable set’’ of p. Similarly, we consider
the ‘‘unstable set’’ of p which we may define as
Wu(p) = Wu(p, f ) = Ws(p, f�1). The stable manifold
theorem guarantees that Ws(p) and Wu(p) are
injectively immersed submanifolds of M whose
dimensions add up to dim M. In these cases, they
are called the stable and unstable manifolds of p,
respectively. A point q2Ws(p)

T
Wu(p) n {p} is called

a ‘‘homoclinic point’’ of p (or of the pair (f, p)). If the
submanifolds Ws(p) and Wu(p) meet transversely at q,
then q is called a ‘‘transverse homoclinic point.’’
Otherwise, q is called a ‘‘homoclinic tangency.’’

In the special case when M is a two-dimensional
manifold, the stable and unstable manifolds of a
saddle periodic point p are injectively immersed
curves in M. A transverse homoclinic point q of p is
a point of intersection off p where the curves are not
tangent to each other. This is depicted in Figure 1
for the case of a saddle fixed point for the map
H(x, y) = (7�x2�y, x), a member of the so-called
Hénon family, which we will discuss later. The
figure was made using the numerical package
‘‘Dynamics’’ which comes with the book by Nusse
and Yorke (1998).

One easily sees that every point in the orbit of
a transverse homoclinic point q of a hyperbolic
saddle fixed point p is again a transverse homoclinic
point of p. Also, the curves Wu(p) and Ws(p) are
invariant; that is, f (Wu(p)) = Wu(p) and f (Ws(p)) =
Ws(p). This implies that the curves Wu(p) and Ws(p)
extend, wind around, and accumulate on each other
forming a complicated web.

Upon seeing this complicated structure in the
restricted three-body problem, Poincaré very poeti-
cally wrote (p. 389, Poincaré 1987)

Que l’on cherche à se représenter la figure formée par
ces deux courbes et leurs intersections en nombre infini
dont chacune correspond à une solution doublement
asymptotique, ces intersections forment une sorte de
treillis, de tissu, de réseau à mailles infiniment serrées;
chacune des deux courbes ne doit jamais se recouper
elle-même, mais elle doit se replier sur elle-même d’une
manière trés complexe pour venir recouper une infinité
de fois toutes les mailles du réseau.
On sera frappé de la complexité de cette figure, que je
ne cherche même pas à tracer. Rien n’est plus propre à
nous donner une idée de la complication du problème
des trois corps et en général de tous les problèmes de
Dynamique où il n’y a pas d’intégrale uniforme . . .

The next major advance concerning homoclinic
orbits was made by Birkhoff (1960), who proved
that in every neighborhood of a transverse
homoclinic point of a surface diffeomorphism,
one can find infinitely many distinct periodic
points. Birkhoff also presented a symbolic
description of the nearby orbits and noticed the
analogy with Hadamard’s description of geodesics
on a surface. Birkhoff’s analysis was generalized
by Smale to arbitrary dimension, and, in addition,
Smale gave a simpler analysis of the associated
nearby orbits in terms of compact zero-dimensional

W 
u(p)

W 
s(p)

q

p

Figure 1 Stable and unstable manifolds in the map

H(x , y) = (7� x2 � y , x ) for the fixed point p � (�3.83, �3.83).
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symbolic spaces which we now call ‘‘shift spaces’’
or ‘‘topological Markov chains.’’

Once one knows that a diffeomorphism f has a
transverse homoclinic point for a saddle periodic
point p, it is interesting to consider the closure of the
orbits of all such homoclinic points. This turns out
to be a closed invariant set containing a dense orbit
and a countable dense set of periodic saddle points
(Newhouse 1980). It is usually called a ‘‘homoclinic
closure’’ or h-closure. These sets form the basis of
chaotic or irregular motions in nonlinear systems.

The Smale Horseshoe Map and
Associated Symbolic System

To understand the geometric picture discovered by
Smale, it is best to start with a concrete example of a
diffeomorphism of the plane known as the ‘‘Smale
horseshoe diffeomorphism.’’

Given any homeomorphism f : X!X on a space
X and a subset U�X, let us define I(f , U) to be the
set of points x2X such that f n(x)2U for every
integer n. Thus, we have

Iðf ;UÞ ¼
\

n2Z

f nðUÞ

We call I(f , U) the invariant set of f in U, or,
alternatively, the invariant set of the pair (f , U).

We now construct a special diffeomorphism f of
the Euclidean plane to itself in which U = Q is the
unit square and for which I(f , U) has a very
interesting structure. It is this map which is usually
known as the Smale horseshoe map.

Let Q = [0, 1]� [0, 1] be the unit square in the
plane R2. Let 0 < � < 1=2, and consider a diffeo-
morphism f : R2!R2 which is a composition of two
diffeomorphisms f = T2 � T1 as follows. The map
T1(x, y) = (��1x,�y) contracts vertically, expands
horizontally, and maps Q to the thin rectangle
Q1 = {(x, y) : 0 � x � ��1, 0 � y � �} which is short
and wide. The map T2 bends the right side of Q1 up
and around so that T2(Q1) = f (Q) has the shape of a
‘‘horseshoe’’ or ‘‘rotated arch.’’ We arrange for T2 to
take the lower-right corner of Q1 up to the upper-left
corner of Q in such a way that f (Q) meets Q in two
full width subrectangles which we call R1 and R2.
This can be done in such a way that the preimages
R�1

1 = T�1
1 (R1) and R�1

2 = T�1
1 (T�1

2 (R2)) are both full-
height subrectangles of Q, and the restricted maps
f1

def
= f j R�1

1 and f2
def
= f j R�1

2 are both affine. Thus, we
arrange that f1 is simply the restriction of T1 to R�1

1 ,
and the map f2 can be expressed in formulas as
f2(x, y) = (���1xþ ��1, ��yþ 1). This construc-
tion implies that f will have the origin p = (0, 0) as a

hyperbolic fixed point. We label the upper-left corner
(0, 1) of Q with the letter q. It follows that the bottom
and left edges of Q will be in the unstable and stable
manifolds of p, respectively, and we have indicated
this in Figure 2 with small arrows.

The above construction gives us a diffeomorphism
f of the plane R2 such that Qþ1

def
= f (Q)

T
Q =

R1

S
R2 is the union of two full-width subrectangles

of Q. We wish to describe I(f , Q). We begin with
the sets Qþ=

T
n�0f n(Q) and Q�=

T
n�0 f�n(Q).

Thus, Qþ is simply the set of points in Q whose
backward orbits stay in Q, and Q� is the set of
points whose forward orbits stay in Q. For i = 1, 2,
each rectangle Ri is mapped to a thin horseshoe in
f (Q) which meets Q in two full-width subrectangles.
Combining these for i = 1, 2 gives four full-width
rectangles as shaded in Figure 3. Thus,
Q
T

f (Q)
T

f 2(Q) consists of these four subrectan-
gles. Figure 3 shows the sets f 2(Q), f�2(Q) as well as
the shaded rectangles we just mentioned.

Continuing in this way, one sees that, for each
n > 0, the set Qþn = Q

T
f (Q)

T
. . .
T

f n(Q) consists
of 2n full-width subrectangles of Q, each with height

p

q

f –2(Q)

f 2(Q)

Figure 3 The sets f 2(Q) and f�2(Q) for the horseshoe map f.

q

p

Q

f(Q)

Q

R2

R1

Q1

T1

Figure 2 The horseshoe map.
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�n. It follows that Qþ=
T

nf n(Q) is an interval
times a Cantor set. Analogously, Q� is a Cantor set
times an interval, and the set I(f , Q) is a Cantor set
in the plane. Let us recall the definition of a Cantor
set C in a metric space X. We first define a Cantor
space C to be a compact, perfect, totally discon-
nected metric space. That is, C is a compact metric
space, whose connected components are points such
that every point x in C is a limit point of C n {x}. A
Cantor set C in a metric space X is a subset which is
a Cantor space in the induced subspace (relative)
topology.

The dynamics of f on the invariant set I(f , Q) can
be conveniently described as follows.

Let �2 = {1, 2}Z be the set of doubly infinite
sequences of 1’s and 2’s. Writing elements a2�2

as a = (ai) = (ai)i2Z, we define a metric � on �2 by

�ða; bÞ ¼
X
n2Z

1

2jnj
jai � bij

The pair (�2, �), then, is a Cantor space.
The ‘‘left-shift automorphism’’ on �2 is the map

� : �2!�2 defined by �(a)i = aiþ1 for each i2Z.
This is a homeomorphism from �2 to itself. It has a
dense orbit and a dense set of periodic points.

For a point x2 I(f , Q), define an element �(x) =
a = (ai)2�2 by ai = j if and only if f i(x)2Rj. It turns
out that the map � : I(f , Q)!�2 is a homeomorph-
ism such that ��=�f .

In general, given two discrete dynamical systems
f : X!X, and g : Y!Y, a homeomorphism
h : X!Y such that gh = hf is called a topological
conjugacy from the pair (f , X) to the pair (g, Y).
When such a conjugacy exists, the two systems have
virtually the same dynamical properties.

In the present case, one sees that the dynamics of f
on I(f , Q) is completely described by that of �
on �2.

It turns out the the Smale horseshoe map contains
essentially all of the geometry necessary to describe
the orbit structures near homoclinic orbits. To begin
to see this, recall that the left and bottom boundaries
of Q were in the stable and unstable manifolds of p.
Extending these curves as in Figure 4, one sees that
the three corners of Q different from p are, in fact,
all transverse homoclinic points of p.

It was a great discovery of Smale that, in the case
of a general transverse homoclinic point, one sees
the above geometric structure after taking some
power f N of the diffeomorphism f. Thus, we have

Theorem 1 (Smale). Let f : M!M be a C1 diffeo-
morphism of a manifold M with a hyperbolic
periodic point p and a transverse homoclinic point
q of the pair (f, p). Then, one can find a positive

integer N and a compact neighborhood U of the
points p and q such that the pair (f N, I(f N, U)) is
topologically conjugate to the full 2-shift (�, �2).

In modern language, we can assert that more
is true. Let �(f ) =

S
0�j<N f j(I(f N, U)) be the f-orbit

of the set I(f N, U). Then, �(f ) is a compact zero-
dimensional hyperbolic basic set for f with
V def

=

S
0�j<N f j(U) as an ‘‘adapted’’ or ‘‘isolating’’

neighborhood. This means that �(f ) =
T

n2Zf n(V)
is a compact, zero-dimensional hyperbolic set (see
Robinson (1999) for definitions and related refer-
ences) contained in the interior of V and f j �(f ) has
a dense orbit. If g is C1 near f, then
�(g) def

=

T
n2Zgn(V) is a hyperbolic basic set for g

and the pairs (f , �(f )) and (g, �(g)) are topologically
conjugate.

To get some appreciation for the magnitude of the
contribution here, one might note the complicated
arguments employed by Poincaré at the end of
Poincaré (1987) to show that so-called heteroclinic
points (intersections between stable and unstable
manifolds of saddles with different orbits) existed.
Birkhoff found a symbolic description (using infinitely
many symbols) of the orbits near a transverse
homoclinic orbit from which the existence of both
infinitely many periodic and heteroclinic points is
obvious. Smale extended the treatment of transverse
homoclinic points to all dimensions, and found the
symbolic description (using two symbols for some
iterate of the map) given above. Moreover, Smale
proved the ‘‘robustness’’ of these structures: they persist
under small C1 perturbations. Note that Poincaré’s
discovery of homoclinic points was in 1899, Birkhoff’s
results came in 1935, and Smale’s results came in
1965. Thus, the above advances took over 65 years!

One can understand the geometry of Smale’s
construction fairly easily in the two-dimensional
case. Let q be the transverse homoclinic point of the
saddle fixed point p of the Cr diffeomorphism f on
the plane R2. Given a small neighborhood ~U of p, let

Figure 4 Stable and unstable manifolds in the horseshoe map.
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Ws(p, ~U) denote connected component of Ws(p)
T ~U

containing p, and define Wu(p, ~U) similarly. We may
choose Cr coordinates (x, y) so that in some small
neighborhood ~U of p, the point p corresponds to
(0, 0), the set Wu(p, ~U) corresponds to (y = 0), and
the set Ws(p, ~U) corresponds to (x = 0). We assume
that ~U is small enough that f in ~U is closely
approximated by its derivative Df(0, 0). Hence, f
nearly contracts vertical directions and expands
horizontal directions in ~U.

Take compact arcs I1�Ws(p) and I2�Wu(p)
both containing the points p and q as in Figure 5.

Let D be a curvilinear rectangle which is a slight
thickening of I1. The forward iterates f i(D) will stay
near I1 for a while and then start to approach I2.
If we choose D appropriately, we can arrange for
some high iterate f N(D) to be a slight thickening
of I2 as in Figure 6. This looks geometrically like the
horseshoe map. Let A1 be the connected component
of the intersection D

T
f N(D) containing p, and let

A2 be the connected component of the intersection
D
T

f N(D) containing q. These sets (which are
shaded in Figure 6) play the role of the rectangles
R1 and R2, respectively, in the horseshoe construc-
tion. We use the set A1

S
A2 for U in Theorem 1.

The Hénon Family

To give explicit formulas for the horseshoe map
above is somewhat tedious, and it is of interest to
note that similar properties occur in maps with
simple formulas. Indeed, such properties occur quite
often in a well-known family of maps known as the
‘‘Hénon family.’’ As we have mentioned, the map in
Figure 1 provides an example.

One may simply define a Hénon map as a
diffeomorphism H = (H1(x, y), H2(x, y)) with inverse
G(x, y) = (G1(x, y), G2(x, y)) such that all the maps
Fi(x, y), Gi(x, y) are polynomials of degree at most
two. It is known (see, e.g., Friedland and Milnor
(1989)) that such maps H have constant Jacobian
determinant, and, up to affine conjugacy, may be
represented in the form H = Ha, b(x, y) = (a� x2 �
by, x) with a, b constants and b 6¼ 0. This makes
sense when all the terms are real or complex. In the
real case, we speak of the real Hénon family and,
in the complex case, we speak of the complex
Hénon family.

The real Hénon family was first presented by the
physicist M Hénon in 1976 as perhaps the simplest
nonlinear diffeomorphism of the plane exhibiting a
so-called ‘‘strange attractor.’’ These mappings in the
real and complex cases have been the focus of much
attention. Our interest here is that, at least for
certain parameters a, b, they provide concrete
globally defined maps whose dynamics are analo-
gous to that of the horseshoe diffeomorphism. In
fact, Devaney and Nitecki (1979) proved (in the real
case) that for fixed b 6¼ 0, there is a constant a0 > 0
such that if a > a0, then the set Ba, b of bounded
orbits of Ha, b is a compact zero-dimensional set and
the pair (Ha, b, Ba, b) is topologically conjugate to
(�, �2). In addition, it can be shown that the
invariant set Ba, b is a single hyperbolic h-closure.
Analogous results are true for the complex Hénon
family and proofs were originally given in the thesis
of Ralph Oberste–Vorth (unpublished) under the
supervision of John Hubbard at Cornell University.
More recent proofs are in Newhouse (2004) and
Hruska (2004). Many interesting results have been
obtained for the complex Hénon map by Bedford
and Smillie and Sibony and Fornaess (see the
references in Hruska (2004).

Homoclinic Points in Systems with
Positive Topological Entropy

There is an invariant of topological conjugacy which is
known as the topological entropy. In a certain sense,
this gives a quantitative measurement of the amount of
complicated or chaotic motion in the system.

p

q

I1

I2
 

Figure 5 The curves I1 �W s(p) and I2 �W u(p).

D

f 
N(D)

f(D)

A2

I1

A1

I2

Figure 6 The curvilinear rectangle D and its N th iterate f N (D)

are geometrically like the horseshoe map.
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Let f : X!X be a continuous self-map of the
compact metric space (X, d). For a positive integer
n > 0, we define an n-orbit to be a finite sequence
O(x, n) = {x, f (x), . . . , f n�1(x)}. Given a positive real
number � > 0, we say that two n-orbits O(x, n) and
O(y, n) are ‘‘�-distinguishable’’ if there is a 0 � j < n
such that d(f jx, f jy) > �. Another way to look at this
is the following. Define the so-called dn-metric on X
by setting dn(x, y) = max0�j<n d(f jx, f jy). Then, the
two n-orbits O(x, n), O(y, n) are �-distinguishable if
and only if dn(x, y) > �. It follows from compactness
of X and the uniform continuity of each of the
maps f j, 0 � j < n, that the number r(n, �, f ) of
�-distinguishable n-orbits is finite for each given � > 0
and each positive integer n. We define the number

hðf Þ ¼ lim
�!0

lim sup
n!1

1

n
log rðn; �; f Þ

This means that, for some sequence of inte-
gers n1 < n2 < . . . , the map f has roughly enih(f )

�-distinguishable ni-orbits for i large and � small.
The number h(f ) is called the topological entropy

of the map f. It may be infinite for homeomorph-
isms, but it is always finite for smooth maps on
finite-dimensional manifolds. The number h(f ) has
many nice properties. For instance, h(f N) = Nh(f )
for every positive integer N, and, if f is a homeo-
morphism, then h(f�1) = h(f ). Further, if f and g are
topologically conjugate, then h(f ) = h(g). The so-
called ‘‘variational principle for topological
entropy’’ asserts that h(f ) is the supremum of the
measure-theoretic entropies of the invariant prob-
ability measures for f. Our interest in this invariant
here is the following theorem of Katok.

Theorem 2(Katok). Let f be a C2 diffeomorphism
of a compact two-dimensional manifold M to itself
with positive topological entropy. Then, f has
transverse homoclinic points.

In fact, Katok extended this theorem (see the
supplement in Hasselblatt and Katok (1995)) to
show that, if h(f ) > 0 and � > 0, then there is a
compact zero-dimensional hyperbolic basic set � for
h such that h(f , �) > h(f )� �. Thus, one can find
nice invariant topologically transitive sets for f (i.e.,
sets with dense orbits) on which the topological
entropies of restriction of f are arbitrarily close to
that of f.

This theorem has the interesting consequence that
the map f ! h(f ) is lower-semicontinuous on the
space of C2 diffeomorphisms of a surface. It was
proved in Newhouse (1989) (and, independently by
Yomdin (1987)) that the map f! h(f ) is upper-
semicontinuous on the space of C1 diffeomorphisms

of any compact manifold. Combining these results
gives the theorem that the map f! h(f ) is contin-
uous on the space of C1 diffeomorphisms on a
compact surface, and that positivity of h(f ) implies
the existence of transverse homoclinic points.

It is also worth noting that, for any continuous
self-map f : M!M on a compact manifold M, one
has the inequality h(f ) � log j	j where 	 is the
eigenvalue of largest norm of the induced map f?
on the first real homology group (Manning 1975).
Putting this together with Theorem 2 gives the fact
that there are whole homotopy classes of diffeo-
morphisms on surfaces all of whose elements have
transverse homoclinic points. For instance, consider
a 2� 2 matrix

L ¼ a b
c d

� �
with integer entries, determinant 1, and eigenvalues
�1,�2 with 0 < j�1j < 1 < j�2j. Let ~L : T2!T2 be
the induced diffeomorphism on the two-dimensional
torus T2. This is an example of what is called an
‘‘Anosov’’ diffeomorphism. In this case the number
	 above is simply �2, and this holds for any
diffeomorphism f of T2 which can be continuously
deformed into ~L. Hence, any such f must have
transverse homoclinic points.

Homoclinic Tangencies

Let {f�,�2 [0, 1]} be a parametrized family of Cr

diffeomorphisms of the plane with � an external
parameter. It frequently occurs that there is a
hyperbolic saddle fixed point p� for each parameter
� moving continuously with � such that, at some
value �0, a homoclinic tangency is created at a point
q0. This means that there are an � > 0, a small
neighborhood U of q0, and curves 
u

� �Wu(p�),

s
��Ws(p�) such that 
s

�

T

u
� = ; for �0 � � < � <

�0, 
s
�0

T

u
�0

= {q0}, and 
s
�

T

u
� consists of two

distinct points for �0 < � < �þ �. In most cases,
the tangency of 
u

�0
and 
s

�0
at q0 will be of the

second order, and we will assume that occurs here.
The geometry is as in Figure 7.
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Figure 7 Creation of a homoclinic tangency.
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The creation of homoclinic tangencies is part of
the general subject of ‘‘homoclinic bifurcations.’’ A
recent survey of this subject is in the book by
Bonatti et al. (2005). Typical results are the
following. If p = p�0

is a saddle fixed point whose
derivative is area-decreasing (i.e., jDet(Df (p))j < 1),
then there are infinitely many parameters � near �0

for which each transverse homoclinic point of p� is a
limit of periodic sinks (asymptotically stable peri-
odic orbits) (Newhouse 1979, Robinson 1983). In
addition, so-called strange attractors and SRB
measures appear (Mora and Viana 1993).

Finally, we mention that recently it has been
shown that, generically in the Cr topology for r � 2,
homoclinic closures associated to a homoclinic
tangency (in dimension 2) have maximal Hausdorff
dimension (Theorem 1.6 in Downarowicz and
Newhouse (2005)).

See also: Chaos and Attractors; Fractal Dimensions in
Dynamics; Generic Properties of Dynamical Systems;
Hyperbolic Dynamical Systems; Lyapunov Exponents
and Strange Attractors; Saddle Point Problems;
Singularity and Bifurcation Theory; Solitons and Other
Extended Field Configurations.
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Overview

Renormalization theory is a venerable subject put to
daily use in many branches of physics. Here, we
focus on its applications in quantum field theory,
where a standard perturbative approach is provided
through an expansion in Feynman diagrams. Whilst

the combinatorics of the Bogoliubov recursion,
solved by suitable forest formulas, has been known
for a long time, the subject regained interest on the
conceptual side with the discovery of an underlying
Hopf algebra structure behind these recursions.

Perturbative expansions in quantum field theory
are organized in terms of one-particle irreducible
(1PI) Feynman graphs. The goal is to calculate the
corresponding 1PI Green functions order by order in
the coupling constants of the theory, by applying
Feynman rules to these 1PI graphs of a
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