TopolagysVol. 12, pr” 5-18. Pergamon Press, 1974. Printed in Great Britain

DIFFEOMORPHISMS WITH INFINITELY MANY SINKS

SHELDON E. NEWHOUSET
(Received 15 July 1973)

(Dedicated to my father, Bernard C. Newhouse 1916-1971)

LET M be a compact C* manifold without boundary, and let Diff"(M) denote the space
of C* diffeomorphisms of M with the uniform C" topology, 1 < r < . Suppose f € Diff"(M)
and p is a periodic point of f of period v; that is, /*(p) = p but f4(p) # p for 0 <k <v.
We say that p is a sink if each eigenvalue of the derivative /™ at p has absolute value lessthan
one. S. Smale suggested in [12] that most diffeomorphisms on S? with the C" topology
ought to have only finitely many sinks. We show here that this is not the case for r > 2 by
proving the following

THEOREM. On any manifold M of dimension greater than one, there is a residual subset
& of an open set in Diff"(M), r > 2, such that every element of # has infinitely many sinks.

A residual subset of an open set 47, of course, means a set which contains a countable
intersection of dense open subsets of A"

Our theorem will be proved as follows. First, sufficient conditions for the appearance
of infinitely many sinks will be given. Second, it will be shown that these conditions can be
obtained in a two dimensional disk D? using the examples in [5]. Then, using well-known
techniques, the conditions can be constructed in a disk of the same dimension as M, after
which they may be conjugated into M via a local coordinate system about a contracting
fixed point of a given diffeomorphism.

Thetheorem was obtained in response to a question raised by M. Shub at the beginning
of the Symposium on Dynamical Systems in Salvador, Brazil, in July 1971. The question
was whether most diffeomorphisms have an Q-spectral decomposition with no cycles (see
[10]). One can see from the examples described here that this question also has a negative
answer.

We take this opportunity to point out that while the statement of Lemma 5.3 in [5] is
correct, the proof given there is not. A correct proof similar to that of Lemma 5.1 in [5]
can be given. Alternatively, the persistence of the tangency condition required can be obtained
directly from Lemmas 3.7 and 5.1 as follows. With the notation of {5}, one can show that for

f C?near L, the sets W*(f) and W*(f) extend to C! foliations #°(f), F*f) on a neighbor-
hood ¥V of p,. This is done by using methods in [3; §6] and [2] to show that the tangents to
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10 SHELDON E. NEWHOUSE

W*(f)and W*(f)extend to C' vector fields on a neighborhood V of p, and then integrating
these vector fields. The vector fields obtained will have tangencies on a C! arc ¢ which is
C! near p,. Then one may apply Lemmas 3.7 and 3.1 to get the tangency condition.

We proceed to give conditions for the appearance of infinitely many sinks.

Fix r > 1. Given a hyperbolic periodic point p of fe Diff"(M), W?*p) and W*o(p))
will denote, respectively, the stable manifold of the point p and the orbit o(p), and W¥(p),
W*(o(p)) will denote the corresponding unstable manifolds. When we wish to emphasize the
dependence of these manifolds on f, we will write W¥(p) = W3(p, 7}, etc. Let p be a hyper-
bolic periodic point of f of period v such that dim W*(p) =dim M — I. Let g,. .... y,, A
be the eigenvalues of the derivative T, f¥ with [z, | < || < <|p | <1 <[], and set
wp) =|pl Alp)=14il. A point of tangency of W?(o(p)) and W*o(p)) is a point x &
W (o(p) » W*o(p)) such that dim(7, W*(o(p)) » T, W*(o(p))) > 0. Since dim W*(o(p))
+ dim W*(o(p)) = dim M, a point of tangency is a non-transversal intersection.

A

PROPOSITION 1. With the notation above, assume x is a point of tangency of W*(o(p))
and W*(o(p)) and u(p) - A(p) < 1. Then given any neighborhoods U of x in M and A" of f in
Dift (M), there is a g in & which has a sink in U.

Before proceeding with the proof of Proposition 1, it is perhaps worthwhile to say a
few words of motivation. Let p,,. .., p, be hyperbolic periodic points of a difftomorphism g.
The orbits form a cycle if o(p,) = o(p,) and, for | <j<n, W*o(p))) — o(p;) N Weo(p;+1))
—o(p;+1) # . A basic question in bifurcation theory is to describe the formation of
cycles. For a general discussion of this problem we refer the reader to [7] and a sequel to that
paper which is now being written. Here we wish to consider what is at first glance the
simplest possible way of forming a cycle. It was, in fact, in this context that Proposition 1 was
discovered.

Consider a diffeomorphism g of a two dimensional manifold having a hyperbolic
fixed point p, such that in local coordinates near p,, g is expressed as
g(u, v) = (pu, iv) with O<pu<l <],

The local stable manifold of p; may be identified with the line segment ¢ = 0, and the local
unstable manifold of p, may be identified with the line segment « =0 as in Fig. 1. Let
(07 Uo) € W“(Pl) and (uo: 0) € WS(PI)

P1J
|
FiG. 1.

With a smooth one parameter family 7,, o <t <1, of difftomorphisms leaving a
neighborhood of p, fixed, let us move a small line segment / = W¥(p,) containing (o, v,)
through the first quadrant so that it becomes tangent to W¥p,) at (u,, o) as in Fig. 2.
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This may be done so that the curves in Fig. 2 represent the local stable and unstable mani-
folds of g, = n, o g at p, for the values t =o, ¢,, t;, .

Now one can see that near (u,, 0) there is a rectangle D whose images under high powers
of various g,’s are as in Fig. 3. Provided D is chosen properly, the difftomorphism g,"| D
is a ““horseshoe ”* diffeomorphism as considered in {13] and g,"| D will have infinitely many
hyperbolic periodic points. Thus in moving from g, to g,, we have introduced infinitely
many new periodic points in D. If ui <1, and g, is the first diffcomorphism among
the g, for which g," has a fixed point in D, then for ¢ > ¢, and near ¢,, g,,” will have a
fixed sink in D. The proof of this is essentially a two dimensional version of proof
Proposition 1, and the reader may find it helpful to keep the above figures in mind.

Proof of Proposition 1. Let dim M = m, and let (u, v) denote coordinates on R"~' x R
where R™~! is the (m — 1)-dimensional Euclidean space and R is the real line.

Making a preliminary approximation and using Sternberg’s linearization theorem [1},
we may assume that fis C* and there are a neighborhood ¥ of p and a C* diffeomorphism
Y:V—R"! x R such that ¥(p) =(0, 0) and ¢/ "¢y '(u, v) =(Au, Av) for (u, v) in
W(V A f7V) where A : R"~' — R™" ! is a linear contraction. Replacing /” by /%", if neces-
sary, and making a further linear change of coordinates on R™~! x R, we may assume that
i>1and |A|L < . The preliminary approximation may be done so that W*(o(p)) is still
tangent to W*(o(p)) at x.

Choose integers n, < n, such that f"'(x), f"(x) € V, ¥f™(x) = (u,, 0), and Yf"'(x) =
(0, v,) with u, # 0 in R*~! and v, # 0 in R. Adjusting y, we may take v, > 0. Let D, be a
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diskin R"~'and D, be an interval in R such that u, € int Dy, v, € int D, . A"D)n D, =
and A7"D, n D, = @f forn >0, and D, x {0} U {0} x D, c yV.

Changing f slightly near f™7'(x) and decreasing D,, we may assume there is a
neighborhood ¥, of {0} x D, in ¥ such that if g: ¥, - R™™! x R is the map (x, v) —
YImTY T Nw,0) = (9y(u,0), g2 (4, v), then g(o, vo) = (i,, 0), g5,(0, t,) = 0, and g,,,(0, v,) #
0 where g,, and g,,, denote the first and second partial derivatives of g, with respect to v.
We assume g,,,(0, v,) <0, the other case being handled similarly. Shrinking V,, we
suppose there is a constant K > 0 such that g,,,(4, v) < —K <0 for (1, t)e V,.

Choose n, >0 such that 4"(D;) x D, < ¥, for n>n,, and let D, =D, x .™"D,.
Taking »ny, n,, D, and D, appropriately, we may assume that (47 x 2/)(D,) < YV for 0 <
J<n Letf, ,: D,— gV, be defined by

Ju u, vy = (g,(A, A7), g,(A"u, A7) + 1) for ¢ small.

Lemma 2. For any neighborhiood U of (u,, 0) there is an integer N >0 such that if
n > N, there is a number t, such that 0 < t, < .~ ""'v and f, , has a fixed sink in U.
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Before proving Lemma 2, we note that Proposition 1 follows from it. To see this, first
observe that f, (u, v) =y """~ Yu, v) + (0, t). Now given a small C" neighborhood
A of f, there are neighborhoods ¥, = int ¥, of f ™' ™ !(u,, 0), a real number ¢ >0, and
an integer N > 0 such that for n > N and 0 <t < ¢, there is a diffeomorphism f, € &~
such that £} [y_y, = fly-v, and

wfiwﬂ'ﬂ:‘"lw_l {w(fo)ﬁDn =/n, rl WSV 1)nDn

Choosing N big enough and ¢ small enough, Lemma 2 implies that one can get
f1" M 7™ 1o have a sink near f™(x) which in turn yields Proposition 1.

We now prove Lemma 2. In what follows, g,,, ¢,, will denote the partial derivatives and
Giws» Giuw» 9w Will denote the second order partial derivatives of g,, i =1, 2. g5, and g,,,
will be considered as linear maps R — R or as real numbers.

The fixed point set of f, , is given by
u =g, (A", A")
v=g,(A"u, i) + ¢
where (u, v) € D, .
2

Setting ¥, (u, v) = u — g,(4"u, A"v) for (u, v) € D,, one has that —
éu

=[-—g,, A" with

d
I the (m — 1) x (m — 1) identity matrix. Thus, for large n, % is an isomorphism, and,
u

hence, there is a C* function u(¢) for v e A™"D, such that y,(u, v) = 0 if and only if u = u(v).
Also, u'(v) = (I — g,, A" " 'g,, +" where u'(v) is the derivative of u(v) at v. Now the fixed
point set of £, . is the set of (u(v), v) such that ¢, (v) =0 where

¢, (v) = g,(A"u(), ") —v+t with vei™D,.
We consider the zeros of ¢, , for n large as ¢ varies.

We have
Gn (V) = g2, A" (V) + g2, 4" — 1.

From the condition | 4|4 < 1, we get that | 4"| |#'(v)| - 0 as n — 0. This and the facts that
g2.(0, v,) =0 and g,,,(¢, v) < —K for (u, v) € V, imply that there is a constant X; >0
such that, for large n, there are points vy, v, € A7"D, such that g,,(4"u(v), A",) < - K|
and g,,(A4"u(v,), A"v;) > K. Thus, for large n, there is a point v, € A”"D, such that ¢, ,(v,) =
0 and g,,(A"u(v,), A"v,)~" is near 1.

Now we show that ¢, ,(v) is strictly negative for v€ A7"D,, n large. This implies that
¢, . has a unique maximum at v,. Then, since the arcs (4"u(v), A"v), v € 27" D, , converge in
the C'senseto {0} x D, asn — oo, it will follow that there are numbers0 <5, < 1, < A7"" 1y,
such that ¢, , has no zero for ¢t < s,, one zero for ¢ = s, and two zeros fors, <t < t,.

Also, since the point (u(v,), v,) is a fixed point of f, ., (u(v,), v,) approaches (u,, 0)
as n — 0. Thus, one can choose the numbers ¢, such that, letting v, ,, < v,,, be the zeros of
¢, fors, <t <t,, the points (u(vy,), Vyne)s (U(V30, V3,,) approach (u,, 0) as n — co. These
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points are fixed points of /, ,. The lemma will then be proved by showing that (u(r,,), 3,,)
is a sink for n large, s, <t < t,, and ¢, close to s,.

With suitable identifications, we have
Br, (1) = Gauy A" (VAW (L) + gayy 274" (1)
+ G2, A"(0) + Ga AN (VA + g4, AT
and
W)=~ = g, A" (=g, AW @)A" — g1, A"ANT — g, A") " 'g,, A"
+( — g1, A" TN (g1 A" (A" + gy, A2,

Since |A"{A" -0 and |A4"||u'(r)| — 0, there are constants e;, e, > 0 such that |u"(x)] <
e A" + ey AP

Then one sees easily that there is a constant ¢, >0 such that ¢, (v) <c, 2"
+ g2,,(A"u(v), A"v)A*" which implies that, for large , ¢, (v)1s negative on A~ "D, as desired.

It will now be shown that («(r,,,), v3,,) is a sink for f, , with 1 > 5, and near s,. Fix
(1, v) € D,. Then, the derivative f ,(u, v) as a linear map from R™™! x Rto R™""! x R has

the form
’ ) — gluAn glv/:'n
f’l‘ r(ll, L) - (gZuAn gZLv}.n)‘
We compute the eigenvalues of f,, (u(v), v) for v near ¢, and ¢ near s,.

Recall that ¢, (v) = g,, A"/ (v) + g,,4" — L, and u'(v) = ({ - g, A") " 'g,,4". Lookingat
the function ¥,(v, x) = ¢; (v) ~ g2, A"U — g1, A" g1, 2" + 1+ g2, A"XL — g, A7) " 'gy 4

oY, . .
— x, one sees that ¥,(v,, 1) =0 and L(un, 1) < 0. Then the implicit function theorem
éx

gives a smooth function x(v) for v near v, such that x(¢,) = | and ¥.(¢, x(¢)) = 0. Also,
one calculates easily that x'(r,) < 0 since ¢, (v,) < 0.Hence, x(v) < | forv > r,and nearv,.

From the equation ¥,(v, x(v)) =0 we get g,,2" = ¢, () — g2, A" — g, A") ‘g, A"
+ 1= —g,, A"(x()] — g,, A" " 'g,, A" + x(v). Thus, for v near v,,

, . _ gluAn glv/:'n
ﬂﬂ““*”“(ghA" —&wﬁu@ﬂ—gmAw”gwﬂ+xw)‘

Letting /; be the m x m identity matrix, we have

, g, A" = x(0) Grot" )
-— ) 1 = - n
S u(©), ) = (W), ( GrA" g AN — g AT gy,
= (g“‘A B f(0)1> ([(gu A" — -Y(L’)[)‘Iglu ’:'")'
gZuA

Thus, f, (u(v), v) — x(v)]; may be written as a product of an m x (m — 1) matrix and
an (m — 1) x m matrix, and, hence, has rank less than m. (Actually, it is clear that rank
S (u(@), v) = m — 1.) This implies that x(¢) is an eigenvalue of f, [(u(v), v).

The proof of Lemma 3 will be completed by showing that for ¢ > 0, v near v,, and n
large, f, (u(v), v) has an invariant (m — 1)-dimensional subspace such that all the eigen-
values of f (u(v), v) restricted to this subspace have absolute value less than or equal to e.
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From this and the fact that x'(¢,) < 0, it follows easily that («(r,,,), 1,.) is 2 sink for £, , if
t > s, 1s near s,.

For v near v,, ¢, [(v) is near 0, and, for n large, g,,(A"(v), A"t)A" is near 1. Also,
g1, # 0 since g,, is near 0 and g is a diffeomorphism. Let

glv’:"l
|glu';'n]
B, =
g, A"
o e
‘glv/‘ |
so that
I —glv.'i‘"
B -1 _ gt
n - /1"
0 |glv ."i
gZu"'
Setting J, = B,”'f. . B,, one has
E, F,
=g 1)
where
At A"
En=gluA"_€£ngZuAn’ anﬁ—a_,,l‘glu’in’
Ggau A Gap A
}Vn 2u An v/"n uAn U}'n .
Fn=(g“An_ 912920 ) 90l ond H, =TI
ng}' |glv/l | gZu/'

Thus |E,|, |F,|, |G, =0, and | H,| - | as n— 0.

The matrices B,, B,”*, and f, , represent linear mappingsfromR™" ™! x R—>R™""' x R.
For the following, give R"~! x R the norm |(u, v)| = max{|u], |v|}.

Using known techniques [3], we show that given £ > 0, there is a subspace W < R™™!
x R such that J (W)= W and |J,|W| <e. From this it follows that each eigenvalue of

J.| W has absolute value less than or equal to ¢, and, hence, the same is true of each eigen-
value of f; .| B.(W).

€
Assume 5 < 1. Choose n large enough so that

>

() [H, YIE|+IH, W Fl+H, G, <

o ™

() |H,'|E|+2H, | F| <1, and
&
3 |E|+|Fl5<e

We will find W as the graph of a linear map P : R"~! —» R such that |P| < % The
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condition that J, (graph P) = graph P is equivalent to saying that P is a fixed point of the

map ®,: P— H, 'PE, + H,”'PF,P — H,”'G,. Let # be the space of linear maps from
g

R™"! 10 R with norm less than or equal to 3

By (1), ®, maps & into itself, and, by (2), it is a contraction. Thus the desired map P
exists.

|
2|

s

Now, if v = (v, v;) € W, then [v] = max{jv,|, lv;]} =]t | since —— <

IR
Uy

< 1. Also,

b ™

. €
Jov=(E, v, + F,vy, G,vy + Hyvy)e W. Thus, 1J,,L'1:\E,,L‘1+F,|L'zis(\E,,l+[F,,[;>

x |vy| < eley| = ¢|v] by (3). This completes the proof of Lemma 2.

Recall that a compact f~invariant set A is a basic set for fif it is hyperbolic, topologically
transitive, the periodic points of fin A are dense in A, and A has a local product structure [2].
The basic set is non-trivial if it contains more than one orbit. In this case it must be infinite.
Given a basic set A for f, there is a neighborhood 7, of fin Diff"(M) such that any g € A",
has a unique basic set A, near A;, and there is a homeomorphism 4 : A, — A, such that
gh=hf. Forxe Ay and g € 7, we denote A(x) by x,. W*A,) and W*(A)) will denote the
stable and unstable manifolds of A, which are defined by W*(A,) = {y e M : a(y, g) < A},
Wi (A,) ={ye M:w(y, g) = Aj}. Here ay, g) and w(y, g) are, respectively, the x-limit set
and w-limit sets of y by g. Also, for xe A, W*x, gy ={yeM:dlg™"y, g7"x)~0 as
n—w}, Wix, g) ={yeM :d(g"y, g"x) > 0 as n — o«c} where d is some topological metric
on M. It is known that each W*(x, g), W*(x, g) is an immersed copy of a Euclidean space and
WY A) = Wix, 9), W3 (A) = |J Wi(x, /) 2], [3]. A point of tangency of W*(A,)

x€Ag xeAg

and W*(A,) is defined as above. If D < M, Cl D will denote its closure in M.

PROPOSITION 3. Suppose A, is a non-trivial basic set for fe Diff" (M) which contains a
periodic point p such that dim W*(p)=dim M — 1. Let A" | be the small neighborhood
of f described above such that each g € &, has a unique basic set A, near A,. Assume there
is a neighborhood A" = A"\ of fin DUT(M) such that if g € N, then W¥(A,) and W*(A,) have
a point of tangency and u(p,) - A(p,) < |. Then there is a residual subset B of A such that
Jor g & B, each point in CL (W*(A)) n Wi(A))) is a limit of a sequence of sinks.

Proof. Forge A, let H, denote the homoclinic class of p,; that is, H, consists of all
periodic points g of g such that W*(o(q)) has a point of transversal intersection with W<(o(p))
and W*(o(p)) has a point of transversal intersection with ¥ °(o(g)). Then H,, contains the
periodic points of A;and Cl H,,_is a closed invariant topologically transitive set which equals
the closure of the transversal homoclinic points of o(p,) [6]. Let KS(.4") denote the residual
set of Kupka-Smale diffeomorphisms in #". Using methods similar to those in [8], one sees
that the mapping g— Cl H, from KS(4") into the compact subsets of M is lower semi-
continuous. Thus it is continuous on a residual subset &, < KS(.¥). Also, if ge 4&,,
ClH,, = Cl(W*“(A,) 0 Wi (A). Let S(g) denote the set of sinks of g for ge A", Similar
reasoning shows that Cl S(g) is a continuous function of g for g in some residual subset
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A, < KS(A47). The proposition will be proved with # = 2, n #, once we show that for
any g € /" and any q € H,,. there is an arbitrarily small approximation g’ of g which has a
sink arbitrarily close to ¢. This is accomplished as follows. Fix a tangency x, of W*A,)
and W73(A,). We make a series of perturbations of ¢ in the complement of a neighborhood
of the orbit of g. First, we perturb g to g, so that there is a periodic point g, € A,, such that
W*o(g,), g,) has a tangency x, with W*(o(q,), g,) near x,. Next, since g is homo-
clinically related to g,, we may perturb g, to g, so that W*(o(q), ¢,) has a tangency x; with
W*(o(q), g.) near x, . Then, we change g, to g5 so that W*(a(p,,), g;) has a tangency x, with
W*(o(pg,), 93) near x; . Finally, we move g; to g’ to introduce a sink near x, using Proposi-
tion 1. Since the sink may be gotten arbitrarily close to a certain disk in #W*(o(q), g) of fixed
diameter (depending only on the position of x;). its orbit under g’ will get close to o(q).

To prove the theorem, it remains to construct open sets in Diff"(M). r > 2, satisfying
the hypotheses of Proposition 3.

Let D™ be a closed m-disk about 0 in R™ with m =dim M. If m > 2, we write D™ =
D? x D™ . Using the examples in [3], for r > 2, one may construct a " diffeomorphism
Jfimapping D? into its interior with the following properties.

(1) There is a basic set A, < int D? such that Sila,, is topologically conjugate to a
shift automorphism on two symbols.

(2) There is a C* neighborhood 47(f,) such that for each g in A4°(f}), W*(A,) has a
tangency with W¥(A,) and there is a fixed point p, such that det(T,, g) < 1.

For m > 2, let /5 be a contracting diffeomorphism of D™ % into its interior with fixed
point at 0. Define f: D™ - D™ by f(x) =fi(x) if m =2, f(x, y) =(fi(x), /L) if m> 2.
If the Lipschitz constant of f, is taken small enough, there is a C" neighborhood A7(f)
such that any g in A47(f) will have an invariant 2-disk C? near D? x {0} [4], [9]. Thus fhas a
neighborhood in which hypothesis similar to those of Proposition 3 are satisfied. Now let £
be a Morse-Smale diffeomorphism on M with a contracting fixed point p,. For instance, we
may choose F to be the time-one map of a Morse-Smale gradient flow on M. Fixing a
small disk D; = M such that p, eint D, and F(D,) < int D, we may find a diffeomorphism
¢ : D, — D™ and a diffeomorphism f: D™ — D™ as above so that the mapping

[F(x) xé D,
ld)—lfd)(x) xe D,

defines a diffeomorphism of M. Then there are small C" neighborhoods of F| satisfying the
hypotheses of Proposition 3.

Fi(x) =

Remarks. (1) If T? is the 3-torus, it is easily seen that examples of residual subsets of
open sets in Diff'(T?) with infinitely many sinks may be gotten using Propositions 1 and 3
and the examples of C. Simon [11].

(2) In {14], R. Thom suggested that for most dynamical systems on a manifold, the
orbits of almost all points would tend to a finite set of structurally stable attractors. This
was shown to be false in 1968 when M. Shub exhibited an open subset of non-structurally
stable diffeomorphisms on the 4-torus 7% each having all of T* as an attractor. The
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examples here go in the other direction by showingthat one can have infinitely many structur-

ally stable attractors. But the question of whether almost all orbits tend to attractors

remains unanswered. More precisely, for e Diff (M). say that a closed f~invariant set A is

an attractor for fif f|, iIs topologically transitive and there is a compact neighborhood U

of A in M such that f(U) < U and ()} f"(U) = A. The basin B(A) of Ais | ) f7"(U) =
n>0 a>0

{y

e M :w(y,f) = A}. Then is it true for most fthat the union of the basins of the attractors

of fis dense in M ?

1

2.

S

~ 3

11.
12.

13
14
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