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LET M be a compact C” manifold without boundary. and let Dir(M) denote the space 

of C’diffeomorphisms of &I with the uniform C’topology, 1 I r < co. Suppose.fE Diff’(iM) 

and p is a periodic point off of period V; that is, f’(p) = p but fk(p) # p for 0 < k < V. 

We say that p is a sink if each eigenvalue of the derivativef’ at p has absolute valuelessthan 

one. S. Smale suggested in [12] that most diffeomorphisms on S2 with the C’ topology 

ought to have only finitely many sinks. We show here that this is not the case for r 2 2 by 

proving the following 

THEOREM. On any manifold M of dimension greater than one, there is a residual subset 

2 of an open set in DifY(M), r 2 2, such that every element of 9 has infinitely many sinks. 

A residual subset of an open set N, of course, means a set which contains a countable 

intersection of dense open subsets of N. 

Our theorem will be proved as follows. First, sufficient conditions for the appearance 

of infinitely many sinks will be given. Second, it will be shown that these conditions can be 

obtained in a two dimensional disk D2 using the examples in [5]. Then, using well-known 

techniques, the conditions can be constructed in a disk of the same dimension as M, after 

which they may be conjugated into 1Cf via a local coordinate system about a contracting 

fixed point of a given diffeomorphism. 

Thetheorem was obtained in response to a question raised by M. Shub at the beginning 

of the Symposium on Dynamical Systems in Salvador, Brazil, in July 1971. The question 

was whether most diffeomorphisms have an R-spectral decomposition with no cycles (see 

[lo]). One can see from the examples described here that this question also has a negative 

answer. 

We take this opportunity to point out that while the statement of Lemma 5.3 in [5] is 

correct, the proof given there is not. A correct proof similar to that of Lemma 5.1 in [5] 

can be given. Alternatively, the persistence of the tangency condition required can be obtained 

directly from Lemmas 3.7 and 5.1 as follows. With the notation of [5], one can show that for 
- - 

f C2 near L, the sets W’cf) and W”(f) extend to C’ foliations 9’(f), P(f) on a neighbor- 

hood V of pO. This is done by using methods in [3; $61 and [2] to show that the tangents to 

t This research was partially supported by a grant from the Organization of American States. 
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-- __- 
W*(f) and W”(f) extend to C’ vector fields on a neighborhood Vof p,, and then integrating 

these vector fields. The vector fields obtained will have tangencies on a CL arc ;: which is 

C’ near pO. Then one may apply Lemmas 3.7 and 5.1 to get the tangency condition. 

We proceed to give conditions for the appearance of infinitely many sinks. 

Fix r 2 I. Given a hyperbolic periodic point p of fE DifY(.%f), W’(p) and W’(o(p)) 

will denote, respectively, the stable manifold of the point p and the orbit o(p), and W’(p), 

wY(o(p)) will denote the corresponding unstable manifolds. When we wish to emphasize the 

dependence ofthese manifolds onJ we will write W’(p) = W’(p,f), etc. Let p be a hyper- 

bolic periodic point off of period I: such that dim W”(p) = dim ~tf - I. Let ii,. . . vs. i 

be the eigenvalues of the derivative T, f" with 1 p, j I 1 p2 / I I / ,q < 1 < / i. 1. and set 

p(p) = lpS/ A(p) = i i.1. A point of tangency of W’(o(p)) and W”(o(p)) is a point .Y E 

W” (o(p) n W”(o(p)) such that dim(rK WS(o(p)) n TC W”(o(p))) > 0. Since dim W’(o(p)) 

+ dim W”(o(p)) = dim M, a point of tangency is a non-transversal intersection. 

hOPOSITION 1. With the notation above, assume .Y is a point of tangency of W’(o(p)) 

and W”(o(p)) and ,u(p) i.(p) < 1. Then given any neighborhoods U of x in n/r and .A’ off in 

Diff ‘(M), there is a g in N which has a sink in U. 

Before proceeding with the proof of Proposition 1, it is perhaps worthwhile to say a 

few words of motivation. Let p,, . . , p,, be hyperbolic periodic points of a diffeomorphism g. 

The orbits form a cycle if o(pr) = o(p,) and, for 1 <j < n. W”(o(p,)) - o(p,) n W’(o(p,+,)) 
- o(pj+,) # 0. A basic question in bifurcation theory is to describe the formation of 

cycles. For a general discussion of this problem we refer the reader to [7] and a sequel to that 

paper which is now being written. Here we wish to consider what is at first glance the 

simplest possible way of forming a cycle. It was, in fact, in this context that Proposition 1 was 

discovered. 

Consider a diffeomorphism g of a two dimensional manifold having a hyperbolic 

fixed point p1 such that in local coordinates near pl, g is expressed as 

g(Ll, E) = (pu, J.u) with 0 < ,U < 1 < 2. 

The local stable manifold ofp, may be identified with the line segment L’ = 0, and the local 

unstable manifold of pr may be identified with the line segment u = 0 as in Fig. 1. Let 

(0, u,) E W”(pr) and (u,, 0) E WYPJ 

FIG. I. 

With a smooth one parameter family qt, o I t 2 1, of diffeomorphisms leaving a 

neighborhood of pr fixed, let us move a small line segment 1 c W”(pl) containing (0, v,) 

through the first quadrant so that it becomes tangent to WS(pl) at (u,, o) as in Fig. 2. 
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FIG. 2. 

This may be done so that the curves in Fig. 2 represent the local stable and unstable mani- 

folds of g1 = q1 o g at pr for the values t = o, t,, t, , 1. 

Now one can see that near (u, , o) there is a rectangle D whose images under high powers 

of various g,‘s are as in Fig. 3. Provided D is chosen properly, the diffeomorphism glnl D 

is a “ horseshoe ” diffeomorphism as considered in [ 131 and gr” 1 D will have infinitely many 

hyperbolic periodic points. Thus in moving from g,, to gr, we have introduced infmitely 

many new periodic points in D. If $. < 1, and gl, is the first diffeomorphism among 

the g1 for which gr,” has a fixed point in D, then for t > t, and near t,, gtO” will have a 

fixed sink in D. The proof of this is essentially a two dimensional version of proof 

Proposition 1, and the reader may find it helpful to keep the above figures in mind. 

Proof of Proposition 1. Let dim &f = m, and let (u, v) denote coordinates on Rm-’ x R 

where R’“-’ is the (m - I)-dimensional Euclidean space and R is the real line. 

Making a preliminary approximation and using Sternberg’s linearization theorem [l], 

we may assume that f is C” and there are a neighborhood V of p and a C” diffeomorphism 

$ : V+ R”-’ x R such that Ii/(p) = (0, 0) and tjf’$-‘(u, v) = (Au, 1.~) for (u, v) in 

$(Vnf-‘V)whereA:R”- 1 + R"- ’ is a linear contraction. Replacing f” by f ‘“, if neces- 

sary, and making a further linear change of coordinates on R”-’ x R, we may assume that 

2 > 1 and 1 A [ ,! < 1. The preliminary approximation may be done so that W(o(p)) is still 

tangent to W”(o(p)) at x. 

Choose integers n, < n, such that f”‘(x), f”‘(x) E V, $f”‘(x) = (u,, o), and $f”‘(x) = 

(0, u,) with U, # 0 in R”-’ and v, # 0 in R. Adjusting II/, we may take v, > 0. Let D, be a 
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FIG. 3. 

diskinR”-’ and D2 be an interval in R such that u0 E int D,, I;, E int D2. A”(D,) n D, = 0 

and i.-“D, n D, = 0 for n > 0, and D, x (0) u (Oj x D, c ri/ V. 

Changing f slightly near j-“‘-‘(x) and decreasing D2, we may assume there is a 

neighborhood V,, of {0} x D, in cc/V such that if g : V, -+ R”-’ x R is the map (u, t.) + 

tiY-“* $-‘(u,~) = (gr(u, c),g,(u, c)), theng(o, c,) = (II,, o), gzU(o, c,) = 0, and g2Jo, GJ # 
0 where gzv and gzvv denote the first and second partial derivatives of g2 with respect to L’. 

We assume gzvU(o, c,) < 0, the other case being handled similarly. Shrinking V,, we 

suppose there is a constant K > 0 such that gzcv(u, E) < -K < 0 for ir[. L’) E V,. 

Choose no > 0 such that A”(D,) x D, c V, for n 2 t7,, and let D, = D, x i.-"D, . 

Taking n,, n, , D, and D, appropriately, we may assume that (A’ x ij)(D,) c II/V’ for 0 I 

j I n. Let f,, , : D, -+ g V, be defined by 

f,, t(~i, t.) = (g,(A”u, j.Y), g2(A”Il: ;“c) + r) for t small. 

LEMMA 2. For any neighborhood U of (u,, o) there is an integer N > 0 such that if 

n 2 N, there is a number t, such that 0 < t, < j.-“T’~, andf”? f, has a_f?xed sink in U. 
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Before proving Lemma 2, we note that Proposition 1 follows from it. To see this, i?rst 

observe thatf,, I(~, c) = $f”““‘-“I I/-‘(u, c) + (0, r). Now given a small C’ neighborhood 

M off, there are neighborhoods Vi c int V, off-‘$-‘(u,, o), a real number c > 0, and 

an integer 1V > 0 such that for n > N and 0 < t < c, there is a diffeomorphismf, E JY 

such thatf, I.M-yz =fl.rl-Y, and 

*j-1 vn+n’-n’~-l /i(JV,)nD, =f,. I/ $(fV,)nD: 

Choosing N big enough and c small enough, Lemma 2 implies that one can get 

fl vnfn2--n1 to have a sink near f”*(x) which in turn yields Proposition 1. 

We now prove Lemma 2. In what follows, giU, giv will denote the partial derivatives and 

giuu a giuv, givv will denote the second order partial derivatives of gi, i = 1, 2. gZv and gZuv 

will be considered as linear maps R + R or as real numbers. 

The fixed point set offn, I is given by 

U = g,(A”u, j.“U) 

1: = g,(A”u, i.“U) + 1 

where (u, t.) E D,. 
4 

Setting $i(~, v) = u - gl(A”u, 1.“~) for (II, v) E D,, one has that * = I- giuAn with 
l3.l 

I the (m - 1) x (m - 1) identity matrix. Thus, for large n, % is an isomorphism, and, 

hence, there is a C” function u(c) for v E E.- "D, such that $i(u, v) = 0 if and only if u = u(v). 

Also, u’(v) = (I - gi,, A”)-‘g,Uj.” where U’(C) is the derivative of u(c) at L’. Now the fixed 

point set off”, t is the set of (u(v), v) such that 4,. ,(v) = 0 where 

$,, Jv) = g2(AnU(v), i.“U) - v + t with v E E.-"D, 

We consider the zeros of 4,,, , for n large as t varies. 

We have 

+A, t(v) = gzUA”u’(v) + g*“E.” - 1. 

From the condition j A 11. < 1, we get that / A" 1 1 u'(v) / -+ 0 as n + co. This and the facts that 

g2&o, v,) = 0 and gZvv(u, v) < -K for (u, v) E V, imply that there is a constant Kl > 0 

such that, for large n, there are points vl, v2 E i.-” D, such that g2V(AnU(v1), E.“v,) < -Kl 

and gZo(A”U(Q, i.“v,) > K,. Thus, for large n, there is a point v, E A.-"D, such that $A, *(v,) = 

0 and g2J.4”U(Un), j.?,);.” is near 1. 

Now we show that 4:, I(v) is strictly negative for v E I.-"D,, n large. This implies that 

&, f has a unique maximum at v, . Then, since the arcs (A%(v), j.“v), v E i-“D,, converge in 

the C’ sense to (0) x D, as n + co, it will follow that there are numbers 0 < s, < r,, < J.-“+lv, 

such that 4,. t has no zero for t < s,, one zero for t = s, , and two zeros for s, < t I t, . 

Also, since the point (u(v,), v,) is a fixed point off,, Sn, (u(v,), v,) approaches (u, , o) 
as n + co. Thus, one can choose the numbers t, such that, letting vlnt < cZnt be the zeros of 

4.. t for S, c t 5 t,, the points (~(vi,,J, vi,& (u(Q,,~, v2,J approach (u, , o) as n + co. These 
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points are fixed points off,, f. The lemma will then be proved by 

is a sink for n large, s, t,. and t, to s,. 

we have 

g?& il”U’(V)‘4”ff’(L.) 

gzU .-l”rc”(r,) 
and 

U”(U) -(I - gi,A”)-‘( -giuuAnl/(C)A” - gl,,E.“rl”)(l 

+(I-g,,A”)-‘(g,,,A”l~‘(~)L” 

A”/ E.” -+ and j A”1 -+ there are constants > 0 such 

e, izn. 

one sees easily that there is c2 > 0 such c2 

+ g2JAnU(U), i~“u)/l.‘” which for large II, 4:. Jr) is on E_-“D2 as 

It will now shown is a sink forf,, , with t > s, and near s,. Fix 

(u, u) E D,. Then, the derivativef:, JCI. u) as a linear map from R”-’ x R to R”-’ x R has 

the form 

We compute the eigenvalues of.fi, l(cc(~), C) for I’ near C, and t near s, 

Recall that 4:. ,(u) = g2UA”c~‘(~) + gzVL” - 1, andu’(D) = (I- g1U,4”)-1g,C~.“. Lookingat 
n -1 the function Ic/*(u, x) = 4:,,(c) - gIu/jn(l - glU~“)-‘giUi.” -+ 1 +g2,A”(xl - giUA ) glVE.” 

a+, - X, one sees that 1+9~(u,, 1) = 0 and +(u,, 1) < 0. Then the implicit function theorem 
0.K 

gives a smooth function x(v) for c’ near L’, such that x(L’,) = I and $:(z’. x(r)) = 0. Also, 

one calculates easily that x’(L’,) < 0 since 4:. t(c,) < 0. Hence, x(u) < 1 for I‘ > L‘, and near c,. 

From the equation rl/?(u, x(c)) = 0 we get gzV;,” = 4:. ,(L’) - gzUA”(Z - gt,,A”)-‘g,vJ. 

+ I = -g,,A”(x(c)/ - giU A”)-‘giv i.” + X(V). Thus. for L’ near c,, 

fi. ,(4t’>, VI = (;;$l glui” 
-g2” A”(x(v)Z - 91” A”) - lgl” L” + x(c) 1 

Letting I, be the m x m identity matrix, we have 

f;, t(K(u), u) - x(u)Z, = 
g,,. j.” 

n -1 
-gz,A”(x(oY - 91”A ) glvj-” 

(Z(g,, A” - x(c)Z)-‘g,,L”) 

Thus, f:, t(u(v), v) - x(u)Z, may be written as a product of an IN x (m - I) matrix and 

an (m - 1) x rn matrix, and, hence, has rank less than m. (Actually. it is clear that rank 

f:, t(u(~j), u) = m - 1.) This implies that x(?) is an eigenvalue off:. r(u(~), u). 

The proof of Lemma 3 will be completed by showing that for E > 0, L’ near u,,, and n 

large, f:, *(u(v), u) has an invariant (m - 1)-dimensional subspace such that all the eigen- 

values off:. t(~(~), u) restricted to this subspace have absolute value less than or equal to E. 
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From this and the fact that x’(c,,) < 0, it follows easily that (u(c?“~), rZnt) is a sink forf:. t if 

t>S,isnears,. 

For IJ near c’, , I$:. ,(c) is near 0, and. for n large, gzv(A”u(c), i.“c)E.” is near 1. Also, 

gIV # 0 since gzV is near 0 and g is a diffeomorphism. Let 

B, = 

so that 

B -l zz 
n 

Setting J” = B”-lfA, f B”, one has 

where 

En = glYA” - gdg2,A”, 
sl2” A” 

” ~ 
’ 

Thus IE.1, lF”J, IG,/-+O,and \H”l+l asn+co. 

The matrices B" , B”- ‘, and f A, I represent linearmappingsfrom Rm-’ x R --t R”-’ x R. 

For the following, give R”-’ x R the norm I(u, v)] = max{jz(], Iv]>. 

Using known techniques [3], we show that given E > 0, there is a subspace WC R”-’ 

x R such that J”(W) = W and j J”[ WI s E. From this it follows that each eigenvalue of 

J”I W has absolute value less than or equal to E, and, hence, the same is true of each eigen- 

value off L, r 1 B”( W). 

Assume ; < 1. Choose n large enough so that 

(1) I~,-‘I!~,l+I~.-‘II~~l+l~~-‘~.I~~ 

(2) IH”-‘1 IE”i +-2lH”-‘l IF.1 -c 1,and 

(3) IE”I+IF”Ik. 

We will find W as the graph of a linear map P : R”-’ -+ R such that IPI I 5. The 
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condition that J, (graph P) = graph P is equivalent to sayin that P is a fixed point of the 

map Q’, : P++ H,-‘PE, t H,-‘PF,P - H,-’ G, Let X be the space of linear maps from 

Rm-’ to R with norm less than or equal to :. 

By (I), @‘, maps X’ into itself. and, by (2), it is a contraction. Thus the desired map P 

exists. 

Now, if c = (c,, c,) E IV, then / ~11 = max{; c1 ;, j c2 / 1 = /cl i since 2 5 i < 1. Also, 
IL! I 

J, v = (E,, cl + F, L’~, G, cl + H, v2) E W. Thus. 

x 1 v1 1 I E j vl j = E I v / by (3). This completes the proof of Lemma 2 

Recall that a compact,f-invariant set A is a basic set forfif it is hyperbolic, topologically 

transitive, the periodic points offin A are dense in A, and A has a local product structure [2]. 

The basic set is non-trivial if it contains more than one orbit. In this case it must be infinite. 

Given a basic set A, forf, there is a neighborhood N, offin Diff’(M) such that any g E JV, 

has a unique basic set A, near A,, and there is a homeomorphism h : A/ -+ As such that 

gh = /zJ For x E A,, and g E Xi, we denote h(x) by xg W”(A,) and Ws(Ag) will denote the 

stable and unstable manifolds of A, which are defined by. WU(A9) = 0, E M : cr(y, g) c A,}, 

Ws(AB) = {y E M: u(y, g) c A,}. H ere cc(y, g) and w(y, g) are, respectively, the r-limit set 

and o-limit sets of y by g. Also, for x E A,, w”(x, g) = {_v E hl : d(g-“y, g-5) -+ 0 as 

n -+ co}, WS(x, g) = (y E M : d(g”y, g”x) + 0 as n -+ x). where d is some topological metric 

on M. It is known that each W”(x, g), W’(x, g) is an immersed copy of a Euclidean space and 

W”(AB) = U WYx, g), Ws(Ag> = U W’(x, f) [2], [3]. A point of tangency of Ws(Ag) 
XGh, xs.4, 

and W”(Ag) is defined as above. If D c M, Cl D will denote its closure in M. 

~OPOSITION 3. Suppose A, is a non-trivial basic set for f E DifI’(,CI) which contains a 

periodic point p such that dim W’(p) = dim ICI - 1. Let N1 be the small neighborhood 

off described above such that each g E X1 has a unique basic set A, near A,. Assume there 

is a neighborhood.N c N, off in Diff’(M) such that ifg E Jlr, then W”(A,) and WS(Ae) have 

a point of tangency and ,u(p,) . j.(p,) < 1. Then there is a residual subset 8 of N such that 

for g E ~8, each point in Cl ( W”(Ag) n W’(A,)) is a limit of a sequence of sinks. 

Proof. For g E N, let Hpg denote the homoclinic class ofp,; that is, Hps consists of all 

periodic points q ofg such that W”(o(q)) has a point of transversal intersection with W’(o(p)) 

and W’(o(p)) has a point of transversal intersection with W”(o(q)). Then Hps contains the 

periodic points of Ap and Cl Hpp is a closed invariant topologically transitive set which equals 

the closure of the transversal homoclinic points of o(p,) [6]. Let KS(Y) denote the residual 

set of Kupka-Smale diffeomorphisms in .N. Using methods similar to those in 181, one sees 

that the mapping g-C1 HP0 from KS(N) into the compact subsets of M is lower semi- 

continuous. Thus it is continuous on a residual subset 39i c KS(Z). Also, if g E gl, 

Cl Hp. = Cl( W”(A& n W’(A,)). Let S(g) denote the set of sinks of g for g E Jlr. Similar 

reasoning shows that Cl S(g) is a continuous function of g for g in some residual subset 
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3 t c KS(JV). The proposition will be proved with A = A, n Lif2 once we show that for 

any g E JY and any q E HP,. there is an arbitrarily small approximation g’ of g which has a 

sink arbitrarily close to q. This is accomplished as follows. Fix a tangency s1 of WY(&) 

and W’(A,). We make a series of perturbations of g in the complement of a neighborhood 

of the orbit of q. First, we perturb g to g, so that there is a periodic point q1 E As, such rhat 

w”(o(q,), gl) has a tangency .Y? with Ws(o(q,). gl) near xl. Next, since q is homo- 

clinically related to ql. we may perturb g, to g1 so that W”(o(q), gz) has a tangency .x3 uith 

W’(o(q), g2) near x2 Then, we change g2 to g3 so that H’“(o(p,,), g3) has a tangency _xt with 

H”(o(p,,), g3) near xj Finally. we move g3 to g’ to introduce a sink near x1 using Proposi- 

tion 1. Since the sink may be gotten arbitrarily close to a certain disk in @“(o(q), g’) of fixed 

diameter (depending only on the position of x3), its orbit under g’ will get close to o(q). 

To prove the theorem, it remains to construct open sets in DifY(Af). r 2 2, satisfying 

the hypotheses of Proposition 3. 

Let D” be a closed m-disk about 0 in R” with nz = dim Al. If m 2 2, we write D” = 

D’ x Dme2. Using the examples in [j], for r 2 2. one may construct a C’ diffeomorphism 

_fi mapping Dz into its interior with the following properties. 

(I) There is a basic set A,, c int D’ such that f1 / ,,,L is topologically conjugate fo a 

shift automorphism on two symbols. 

(2) There is a C’ neighborhood .,b’(f,) such that for each g in J’(J1), wU(AJ has a 

tangency with W”(A,) and there is a fixed point ps such that det(Tpg g) < 1. 

For m > 2, let/-? be a contracting diffeomorphism of D m-2 into its interior with fixed 

point at 0. Define f: D” + D” by J(X) =fi(x) if m = 2, f( x, _v) = (fi(x). &y)) if m > 2. 

If the Lipschitz constant of f2 is taken small enough, there is a C’ neighborhood X(f) 

such that any g in A’(f) will have an invariant ‘-disk C2 near D’ x (0) [a], [9]. Thusfhas a 

neighborhood in which hypothesis similar to those of Proposition 3 are satisfied. Now let F 

be a Morse-Smale diffeomorphism on iCI with a contracting fixed point pI. For instance, we 

may choose F to be the time-one map of a Morse-Smale gradient flow on 1LI. Fixing a 

small disk D, c hf such that p, E int D, and F(Dl) c int D,, we may find a diffeomorphism 

4 : D, --) D” and a diffeomorphism f: D” -+ D” as above so that the mapping 

defines a diffeomorphism of M. Then there are small C’ neighborhoods of FL satisfying the 

hypotheses of Proposition 3. 

Remarks. (1) If T’ is the 3-torus, it is easily seen that examples of residual subsets of 

open sets in Diff’(T’) with infinitely many sinks may be gotten using Propositions 1 and 3 

and the examples of C. Simon [ll]. 

(2) In [14], R. Thorn suggested that for most dynamical systems on a manifold, the 

orbits of almost all points would tend to a finite set of structurally stable attractors. This 

was shown to be false in 1968 when M. Shub exhibited an open subset of non-structurally 

stable diffeomorphisms on the 4-torus T’ each having ail of T” as an attractor. The 
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examples here go in the other direction by showing that one can have infinitely many structur- 

ally stable attractors. But the question of whether almost all orbits tend to artracrors 

remains unanswered. &lore precisely, forfE DiK’( &I). say that a closed f-invariant set A is 

an attractor forfiffj,, is topologically transitive and there is a compact neighborhood U 

of A in M such that f(U) c U and n f”(U) = A. The basin B(A) of A is u f-“(U) = 
nt0 fl20 

(y E .V : wfy,f) c A>. Then is it true for mostfthat the union of the basins of the attractors 

offis dense in M? 
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