ON CODIMENSION ONE ANOSOV DIFFEOMORPHISMS.

By S. E. NEWHOUSE.

1. Throughout this paper, we let M be a compact connected C^∞ manifold without boundary. A C^r diffeomorphism $f: M \to M$, $1 \leq r \leq \infty$, is called an Anosov diffeomorphism if there is a continuous splitting of the tangent bundle $TM = E^s \oplus E^u$, a riemannian metric $\| \cdot \|$ on TM, and constants $c, c' > 0$, $0 < \lambda < 1$, such that

(i) $T_xf(E^s) = E_{f(x)}^s$, $T_xf(E^u) = E_{f(x)}^u$

(ii) For $v \in E^s$, $\| T^f_n(v) \| \leq c \lambda^n \| v \|$, and for $v \in E^u$, $\| T^f_n(v) \| \leq c' \lambda^n \| v \|$

where T_xf refers to the derivative of f at the point x. It can be shown that condition (ii) is independent of the riemannian metric on TM.

In the past few years, Anosov diffeomorphisms have been studied to a great extent. We refer the reader to [2] and [8] for background information, general references, and terms which are not defined here.

An Anosov diffeomorphism is said to be of codimension 1 if either $\dim E^u = 1$ or $\dim E^s = 1$ where E^u and E^s are as in the above definition.

Let A be an $n \times n$ matrix with integer entries such that $\det A = \pm 1$ and the eigenvalues of A are off the unit circle. Then A induces a diffeomorphism \hat{A} of the n-dimensional torus T^n. The map \hat{A} is called a toral automorphism. Two maps $f: M \to M$, $g: N \to N$ are called π_1-conjugate if there is an isomorphism $\phi: \pi_1(M) \to \pi_1(N)$ such that $\phi f_* = g_* \phi$ where $\pi_1(M)$, $\pi_1(N)$ are the fundamental groups and f_*, g_* are the induced maps. The maps f, g are called topologically conjugate if there is a homeomorphism $h: M \to N$ such that $hf = gh$.

For a diffeomorphism $f: M \to M$, we let $NW(f)$ denote the set of non-wandering points of f which is defined by $NW(f) = \{ x \in M: \text{for any neighborhood } U \text{ of } x, \text{there is a positive integer } n(U) \text{ such that } f^n(U) \cap U \neq \emptyset \}$. In [2], Franks proves the following theorem.

(1.1) Theorem. Let $f: M \to M$ be a codimension 1 Anosov diffeomorphism such that $NW(f) = M$. Then f is topologically conjugate to a toral
automorphism. Any two codimension 1 Anosov diffeomorphisms \(f: M \to M, \quad g: N \to N \), such that \(NW(f) = M, \ NW(g) = N \) are topologically conjugate if and only if they are \(\pi_1 \)-conjugate.

Under the assumption that the stable and unstable foliations were of class \(C^2 \), partial results in the direction of Theorem (1.1) were obtained independently by H. Rosenberg.

In this paper, we prove

(1.2) Theorem. Let \(f: M \to M \) be any codimension 1 Anosov diffeomorphism. Then \(NW(f) = M \).

Theorem (1.2) was proved earlier by Smale in the case where \(\dim M = 2 \) (see [2, (7.2)]).

In view of (1.1) and (1.2), we obtain

(1.3) Corollary. Any codimension 1 Anosov diffeomorphism is topologically conjugate to a toral automorphism. Any two codimension one Anosov diffeomorphisms are topologically conjugate if and only if they are \(\pi_1 \)-conjugate.

Applying well-known facts we obtain

(1.4) Corollary. If \(f: M \to M \) is any codimension 1 Anosov diffeomorphism, then

1. the periodic points of \(f \) are dense in \(M \) [8], and
2. \(f \) has an invariant Lebesgue measure and \(f \) is ergodic ([7] or [1]).

I wish to thank J. Franks, M. Hirsch, Z. Nitecki, and C. Pugh for helpful comments.

2. In this section, we prove Theorem (1.2). It is well-known that an Anosov diffeomorphism satisfies Smale's Axioms A and B [8; (6.1) and (6.4)], and we wish to make use of this fact and several of its consequences. Thus we assume familiarity with §§I.3, I.6, and I.7 of [8].

To begin the proof of (1.2), we observe that since there are no Anosov diffeomorphisms of \(S^1 \), we may assume \(\dim M \geq 2 \). Since \(NW(f) = NW(f^{-1}) \), we may assume \(\dim E^u = 1 \) and \(\dim E^s = n - 1 \) where \(\dim M = n \geq 2 \). Further, by taking two two to one coverings if necessary, we may assume \(M \) is orientable, \(TM \) is oriented, and the line bundle \(E^u \) is oriented. Thus the unstable manifolds of \(f \) are oriented arcs. By replacing \(f \) by \(f^2 \) or \(f^4 \), assume \(Tf \) preserves the orientations of \(E^u \) and \(TM \).
Let $NW(f) = \Omega_1 \cup \cdots \cup \Omega_n$ be the spectral decomposition of $NW(f)$. We let $W^s(x)(W^u(x))$ denote the stable (unstable) manifold of f at the point $x \in M$. For a subset Λ of M let

$$W^s(\Lambda) = \bigcup_{x \in \Lambda} W^s(x), \text{ and let } W^u(\Lambda) = \bigcup_{x \in \Lambda} W^u(x).$$

A source is a basic set Ω_i such that $W^s(\Omega_i) = \Omega_i$. A sink is a basic set Ω_i such that $W^u(\Omega_i) = \Omega_i$. It is easy to see that if Ω_i is a source, then $W^u(\Omega_i)$ is an open subset of M, and, if Ω_i is a sink, then $W^s(\Omega_i)$ is an open subset of M. If we show some source is a sink, then it follows that $NW(f) = M$. For, if Ω_i is a source and a sink, then $W^s(\Omega_i) = \Omega_i = W^u(\Omega_i)$ is an open and closed subset of M. Thus $\Omega_i = M$. We proceed to show, in fact, that any source must also be a sink.

Let Ω_i be a source. We will show

(2.1) \hspace{1cm} W^u(\Omega_i) = \Omega_i.

Given $y_1, y_2 \in W^u(x)$, we say $y_1 < y_2$ if $y_1 \neq y_2$ and the subarc of $W^u(x)$ from y_1 to y_2 has the same orientation as $W^u(x)$. For $y_1 < y_2$, let $[y_1, y_2]$ denote the compact subarc of $W^u(x)$ from y_1 to y_2. Let $l[y_1, y_2]$ denote the length of $[y_1, y_2]$. Given $0 < \alpha < \infty$, and $y \in W^u(x)$, define

$$B_+(y_1) = \{y \in W^u(x): y_1 < y \text{ and } l[y_1, y] < \alpha\},$$

and

$$B^+(y_1) = \{y \in W^u(x): y_1 < y\}.$$

Similarly, define

$$B_-(y_1) = \{y \in W^u(x): y < y_1 \text{ and } l[y, y_1] < \alpha\},$$

and

$$B^-(y_1) = \{y \in W^u(x): y < y_1\}.$$

(2.2) \hspace{1cm} \textbf{Lemma.} (1) For each $x \in \Omega_i$, $B^+(x) \cap \Omega_i \neq \emptyset$

(2) For each $x \in \Omega_i$, $B^-(x) \cap \Omega_i \neq \emptyset$.

Before proving (2.2), we show how (2.1) follows from (2.2). Comments by M. Hirsch and J. Franks were useful in simplifying the original proof.

Let $x \in \Omega_i$. We prove that $W^u(x) \subset \Omega_i$. Choose an increasing sequence of integers $n_1 < n_2 < n_3 \cdots$ and a point $y \in M$ such that $f^{n_i}(x) \to y$ as $i \to \infty$.
Since Ω_1 is closed and invariant, $y \in \Omega_1$. By (2.2), we may choose $\alpha > 0$ such that $B_{\alpha}^+(y) \cap \Omega_1 \neq \emptyset$. But then there is an integer $N > 0$ such that for $i \geq N$, $B_{\alpha}^+(f^{ni}(x)) \cap \Omega_1 \neq \emptyset$. Since f^{-ni} contracts the unstable manifolds, we see that x is an accumulation point of $B^+(x) \cap \Omega_1$. That is, x is an accumulation point of $W^u(x) \cap \Omega_1$ from both sides in $W^u(x)$. The same argument shows that any point $v \in W^u(x) \cap \Omega_1$ is an accumulation point of $W^u(x) \cap \Omega_1$ from both sides in $W^u(x)$. Now, since $W^u(x) \cap \Omega_1$ is closed in $W^u(x)$, if y were a point of $W^u(x) - \Omega_1$, then one could find an arc $[x_1, x_2]$ in $W^u(x)$ such that $y \in [x_1, x_2]$, $(x_1, x_2) \cap \Omega_1 = \emptyset$, and $x_1, x_2 \in \Omega_1$. But Ω_1 must accumulate on x_1 and x_2 from both sides in $W^u(x)$. This would contradict the fact that $(x_1, x_2) \cap \Omega_1 = \emptyset$. Thus no such y exists, so $W^u(x) \subseteq \Omega_1$ and (2.1) is proved.

Now we recall some definitions and results we will need for the proof of (2.2).

For each x, we let $W^e_u(x)$ be the intrinsic closed ϵ-ball about x in $W^u(x)$. This is obtained as follows. The Riemannian metric on TM induces one on $TW^u(x)$. This in turn induces a topological metric on $W^u(x)$ which makes $W^u(x)$ homeomorphic to the real line. Then $W^e_u(x)$ is to be the ball of radius ϵ about x in this topological metric. Similarly, let $W^e_s(x)$ be the intrinsic closed ϵ-ball about x in $W^s(x)$. Thus $W^e_u(x)$ is diffeomorphic to a closed $(n-1)$-disk where $\dim M = n$. For any subset Λ of M, and $y \in \Lambda$, let $W^s(y, \Lambda)$ be the connected component of $W^s(y) \cap \Lambda$ which contains y. Similarly, let $W^u(y, \Lambda)$ be the connected component of $W^u(y) \cap \Lambda$ which contains y. The following fact is an easy consequence of Theorem (7.3) of [8]. This theorem is proved in [4].

(2.3) There is an $\epsilon > 0$ such that for each $x \in M$, there is a neighborhood $V^e(x)$ of x satisfying

(2.3.1) $V^e(x)$ is homeomorphic to $W^e_u(x) \times W^e_s(x)$.

(2.3.2) for $y_1, y_2 \in V^e(x)$, if $W^u(y_1, V^e(x)) \cap W^u(y_2, V^e(x)) \neq \emptyset$, then $W^u(y_1, V^e(x)) = W^u(y_2, V^e(x))$; similarly, if $W^s(y_1, V^e(x)) \cap W^s(y_2, V^e(x)) \neq \emptyset$, then $W^s(y_1, V^e(x)) = W^s(y_2, V^e(x))$.

(2.3.3) for $y_1, y_2 \in V^e(x)$, $W^u(y_1, V^e(x)) \cap W^s(y_2, V^e(x))$ is a single point.

The interior of $V^e(x)$ is usually referred to as a local product neighborhood, and (2.3) is referred to as the local product theorem.
For our purposes it is convenient to use the notion of a product set which is a sort of elongated closed local product neighborhood. Let \(x \in M \), and \(\epsilon > 0 \). A stable product set relative to \(W^s_\epsilon(x) \) is a set, denoted by \(N \) or \(N(W^s_\epsilon(x)) \), satisfying the following conditions.

\[
(2.4) \quad N = \bigcup \{ W^u(y, N) : y \in W^s_\epsilon(x) \}.
\]

(2.5) For \(y_1, y_2 \in N \), either \(W^u(y_1, N) \cap W^u(y_2, N) = \emptyset \) or \(W^u(y_1, N) = W^u(y_2, N) \); similarly, either \(W^s(y_1, N) \cap W^s(y_2, N) = \emptyset \) or \(W^s(y_1, N) = W^s(y_2, N) \).

(2.6) For \(y_1 \in N \), \(W^s(y_1, N) \) \((W^u(y_1)) \) is homeomorphic to a closed ball in \(W^s(y_1)(W^u(y_1)) \).

(2.7) There exists \(\epsilon_1 > 0 \) such that \(W^u_\epsilon_1(y_1) \subseteq W^u(y_1, N) \) for all \(y_1 \in W^s(y_1, N) \).

(2.8) If \(y_1, y_2 \in N \), then \(W^u(y_1, N) \cap W^s(y_2, N) \) is a single point.

For \(K \subseteq W^s_\epsilon(x) \), a stable product set \(N \) or \(N(K) \) relative to \(K \) is defined to be \(\bigcup_{y \in K} W^u(y, N(W^s_\epsilon(x))) \) where \(N(W^s_\epsilon(x)) \) is some stable product set relative to \(W^s_\epsilon(x) \).

Similarly, for \(x \in M \), \(\epsilon > 0 \), we may define an unstable product set relative to \(W^u_\epsilon(x) \) or \(K \) where \(K \subseteq W^u_\epsilon(x) \).

2.9) Remark. 1. Using (2.3), and the compactness of \(W^u_\epsilon(x) \) and \(W^s_\epsilon(x) \), it is easy to check that for any \(x \in M \), and any \(\epsilon > 0 \), product sets relative to \(W^u_\epsilon(x) \) and \(W^s_\epsilon(x) \) exist.

2. If \(N \) is a stable product set relative to \(W^s_\epsilon(x) \), \(K \subseteq W^s_\epsilon(x) \), and \(y \in N \), then \(N(K) \cap W^s(y, N) \) is homeomorphic to \(K \). A similar statement holds for unstable product sets.

Now we prove Lemma (2.2). We prove (2.2.1) since the same methods yield (2.2.2). Let \(A = \{ x \in \Omega : B^s(x) \cap \Omega \neq \emptyset \} \). We proceed to show \(A = \Omega \).

Step 1. \(A \) is an \(f \)-invariant subset of \(\Omega \), i.e. \(f(A) = A \).

Proof. This follows easily from the fact that \(f \) preserves the orientation of \(E^u \) and the facts that for any \(x \in M \), \(f(W^s(x)) = W^s(f(x)) \) and \(f(W^u(x)) = W^u(f(x)) \).

Step 2. If \(x \in \Omega \) is not periodic, then \(x \in A \).
Proof. Choose $\epsilon > 0$ as in (2.3). Since x is not periodic, the orbit of x, $o(x)$, is infinite. We claim

$$(2.10) \text{there is an infinite sequence } \{x_i\}_{i \geq 1} \subset o(x) \text{ such that if } x_i \neq x_j \text{ then } W^s(\epsilon x_i) \cap W^s(\epsilon x_j) = \emptyset.$$

If for each pair of integers $n_1 > n_2$, $W^s(f^{n_1}(x)) \cap W^s(f^{n_2}(x)) = \emptyset$, (2.10) is true. If there are integers $n_1 > n_2$ such that

$$W^s(f^{n_1}(x)) \cap W^s(f^{n_2}(x)) \neq \emptyset,$$

then $W^s(f^{n_1}(x)) = W^s(f^{n_2}(x))$, and so $f^{n_1-n_2}(W^s(x)) = W^s(x)$. Since $f^{-(n_1-n_2)}$ expands $W^s(x)$, there is an increasing sequence of integers m_1, m_2, \cdots such that if $i \neq j$, the distance in $W^s(x)$ between $f^{-m_i(n_1-n_2)}(x)$ and $f^{-m_j(n_1-n_2)}(x)$ is larger than 2ϵ. Thus $W^s(f^{-m_i(n_1-n_2)}(x)) \cap W^s(f^{-m_j(n_1-n_2)}(x)) = \emptyset$, and we take $x_i = f^{-m_i(n_1-n_2)}(x)$ for (2.10).

Now let y be a limit point of $\{x_i\}$, and choose a subsequence $\{x_{i_j}\}$ such that $x_{i_j} \to y$ as $j \to \infty$. Let $V_\epsilon(y)$ be a neighborhood of y, as described in (2.3). By (2.3) and the fact that the stable manifolds are $(n-1)$-dimensional, it is clear that if $x_{i_j} \neq x_{i_k}$ and $x_{i_j}, x_{i_k} \in V_\epsilon(y)$, then either $B^+(x_{i_j}) \cap W^s(x_{i_k}) \neq \emptyset$ or $B^+(x_{i_k}) \cap W^s(x_{i_j}) \neq \emptyset$, so either $x_{i_j} \in A$ or $x_{i_k} \in A$. In either case, since $\{x_{i_j}, x_{i_k}\} \subset o(x)$ and A is f-invariant (step 1), we obtain that $x \in A$.

It remains to show if $p \in \Omega_1$ is periodic, then $p \in A$. The arguments for this fact for the case where $\dim M = 2$ are different from those for the case where $\dim M > 2$.

First assume $\dim M = 2$, and $p \in \Omega_1$ is periodic of period m, i.e., $f^m(p) = p$. Since M has a nowhere vanishing line field and is orientable, we may assume M is the two torus T^2. Suppose $p \notin A$. Then $B^+(p) \cap W^s(p) = \emptyset$. Since Ω_1 is a source, $W^s(p) \subset \Omega_1 \subset NW(f) = NW(f^m)$. Thus there is a source Ω_1' for f^m such that $p \in \Omega_1'$ and p is a fixed point of f^m. Since $W^s(p)$ is dense in Ω_1', it recovers on itself.

Let $V_\epsilon(p)$ be as in (2.3). Since the unstable bundle E^u on M is oriented, so is the stable bundle E^s. Let q be a point of $W^s(p) \cap B^-(\epsilon p)$, and consider the loop γ consisting of the arc in $W^s(p)$ from p to q followed by the arc in $B^-(\epsilon p)$ from q to p. If γ is null-homotopic, then, since it is a topological circle embedded in a topological torus, it bounds a topological 2-disk. But then if we follow $W^s(p)$ in the direction from p to q and go beyond q to the first point q_1 where $W^s(p)$ meets $B^-(\epsilon p)$ again, it is easy to see that the arc from p to q must cross $B^-(\epsilon p)$ in the direction opposite to that of the arc from q to q_1. This contradicts the fact that the stable
bundle \(E^s \) is oriented. Thus \(\gamma \) is not null-homotopic. Again since \(M \) is a torus, \(M^2 - \gamma \) is a topological cylinder which has an unstable foliation induced by \(\{ W^u(x) \}_{x \in M} \). Now it is easy to see how to define \(\omega \)-limit sets and set up a Poincare-Bendixon theory (see [3] or [6]) for this continuous foliation on \(M^2 - \gamma \). (Alternatively, using the structurally stability of \(f \), one could, by approximating, assume \(f \) is \(C^1 \) and use theorem (6.5) of [4] to get \(E^u \) is \(C^1 \) and apply the standard Poincare-Bendixon theory.) Since closure \((B^+(p) - B^+(p)) \subset M^2 - \gamma \), the \(\omega \)-limit set of the leaf \(B^+(p) \) is a non-empty subset of \(M^2 - \gamma \). Since the foliation \(\{ W^u(x) \} \) has no singularities, Poincare-Bendixon theory says the \(\omega \)-limit set of \(B^+(p) \) must be a circle in \(M^2 - \gamma \). But this is obviously impossible since all the unstable manifolds of \(f \) are injectively immersed cells. Thus the assumption that \(p \notin A \) leads to a contradiction. This completes the proof of (2.2.1) for \(\dim M = 2 \).

For the remainder of the proof of (2.2.1), we assume \(\dim M \geq 3 \), and, as before, \(p \in \Omega_1 \) is periodic.

Step 3. By step 2, if \(x \in W^s(p) - \{ p \} \), then \(x \in A \). For \(x \in W^s(p) - \{ p \} \), define \(\tilde{\phi}(x) = \inf \{ l[x,y] : y \in B^+(x) \cap \Omega_1 \} \). If there is an \(x \) such that \(\tilde{\phi}(x) = 0 \), then \(p \in A \). Hence we may assume \(\tilde{\phi}(x) > 0 \) for \(x \in W^s(p) - \{ p \} \).

Proof. This follows immediately from the continuous dependence of the stable manifolds on compact sets and the fact that if \(x, y \in \Omega_1 \), then \(W^u(x) \cap W^s(y) \subset \Omega_1 \).

Step 4. For \(x \in W^s(p) - \{ p \} \), let \(\phi(x) \) be the point in \(B^+(x) \) such that \(l[x,\phi(x)] = \tilde{\phi}(x) \). Then there is a \(z_0 \in M \) such that \(\phi(x) \in W^s(z_0) \) for all \(x \in W^s(p) - \{ p \} \); i.e., all the \(\phi(x) \) lie in the same stable manifold as \(x \) varies in \(W^s(p) - \{ p \} \).

Proof. For any \(z \in M \), let \(U_z = \{ x \in W^s(p) - \{ p \} : \phi(x) \in W^s(z) \} \). It is clear that \(U_z \) is open in \(W^s(p) - \{ p \} \) for all \(z \). Clearly, if \(W^s(z_1) \neq W^s(z_2) \), then \(U_{z_1} \cap U_{z_2} = \emptyset \). Now since \(\dim W^s(p) \geq 2 \), \(W^s(p) - \{ p \} \) is connected. Hence, if \(z_0 \) is such that \(U_{z_0} \neq \emptyset \), then \(U_{z_0} = W^s(p) - \{ p \} \).

Step 5. The map \(\phi : W^s(p) - \{ p \} \to W^s(z_0) \) is continuous and injective.

Proof. Let \(x \in W^s(p) - \{ p \} \), and let \(\gamma \) be the arc \([x,\phi(x)]\). Let \(\epsilon > 0 \). There is an unstable product set \(N \) relative to \(\gamma \) such that \(W^s(\phi(x),N) \subset W^s(\phi(x)) \) and \(p \notin W^s(x,N) \). Then if \(y \in W^s(z_0,N), \phi(y) \in W^s(\phi(x),N) \subset W^s(\phi(x)) \). So \(\phi \) is continuous. Injectivity follows immediately from the definition of \(\phi \).
Thus if \(K \subseteq W^s(p) - \{p\} \) is compact, \(\phi \mid_K \) is a homeomorphism. Let \(E_0 \) be a closed \((n-1)\)-ball in \(W^s(p) \) containing \(p \) in its interior relative to \(W^s(p) \). Let \(\Sigma_0 \) be the boundary of \(E_0 \) in \(W^s(p) \) so that \(\Sigma_0 \) is an \((n-2)\)-sphere in \(W^s(p) - \{p\} \). Let \(H = \bigcup_{a \in \Sigma_0} [x, \phi(x)] \). Then, clearly, \(H \) is homeomorphic to \(\Sigma_0 \times I \) where \(I \) is the unit interval.

Step 6. For \(x \in \Sigma_0 \), let \(\gamma_x = [x, \phi(x)] \). For \(y \in \gamma_x \), let \(\Sigma_y \) be the path component of \(W^s(y) \cap H \) which contains \(y \). Then

\[(2.11) \quad \Sigma_y \text{ is homeomorphic to an } (n-2)\text{-sphere} \text{; hence, by the Jordan-Brouwer separation theorem, \cite[9, p. 198]{9}, } \Sigma_y \text{ separates } W^s(y).\]

Proof. We first assert

\[(2.12) \quad \text{For each } x, x_1 \in \Sigma_0, \text{ and each } y \in \gamma_x, \Sigma_y \cap \gamma_{x_1} \text{ is exactly one point}.\]

If \((2.12) \) is true, fix \(x \) and define \(\phi_y : \Sigma_0 \to \Sigma_y \) by \(\{\phi_y(x)\} = \Sigma_y \cap \gamma_{x_1} \) for \(x_1 \in \Sigma_0 \). Then it is easy to check that \(\phi_y \) is injective, surjective, and continuous, so it is a homeomorphism. Thus we need to prove \((2.12) \).

We first prove

\[(2.13) \quad \text{if } y \in \gamma_x, \text{ then } \Sigma_y \cap \gamma_{x_1} \neq \emptyset \text{ for all } x_1 \in \Sigma_0.\]

Fix \(y \in \gamma_x \). Let \(\Sigma_0' = \{z \in \Sigma_0 : \Sigma_y \cap \gamma_z \neq \emptyset\} \). By the local product theorem \((2.3) \), \(\Sigma_0' \) is open in \(\Sigma_0 \). We show \(\Sigma_0 - \Sigma_0' \) is open in \(\Sigma_0 \).

Let \(z \in \Sigma_0 - \Sigma_0' \). Then \(\Sigma_y \cap \gamma_z = \emptyset \), so there is an unstable product set \(N \) relative to \(\gamma_z \) such that \(N \cap \Sigma_y = \emptyset \). Now, by the version of \((2.7) \) for the unstable product set \(N \), \(N \cap \Sigma_0 \) is a neighborhood of \(z \) in \(\Sigma_0 \). But \(N \cap \Sigma_0 \subseteq \Sigma_0 - \Sigma_0' \), so \(\Sigma_0 - \Sigma_0' \) is open in \(\Sigma_0 \). Since \(\dim \Sigma_0 \geq 1 \), and \(\Sigma_0' \neq \emptyset \), \(\Sigma_0' = \Sigma_0 \). Thus \((2.13) \) is proved.

Now for fixed \(x \in \Sigma_0 \), let \(D_x = \{y \in \gamma_x : \Sigma_y \cap \gamma_{x_1} \text{ is one point for all } x_1 \in \Sigma_0\} \).
We show D_x and $\gamma_x = D_x$ are open in γ_x. By taking a stable product set relative to E_0, we see that $D_x \neq \emptyset$, so $D_x = \gamma_x$ which proves (2.13).

D_x open: Let $y \in D_x$. Then the map $\phi_y : \Sigma_0 \to \Sigma_y$ defined above is injective, surjective, and continuous, so it is a homeomorphism. Let N_y be a stable product set relative to Σ_y. Then $W^u(y, N_y) \cap \gamma_x$ is a neighborhood of y in γ_x which is contained in D_x.

$\gamma_x = D_x$ open: Let $y \in \gamma_x = D_x$. By (2.13), there exists an $x_1 \in \Sigma_0$ such that $\Sigma_y \cap \gamma_{x_1}$ has at least two points. Then using a stable product set relative to an arc in Σ_y which connects y and two points of $\Sigma_y \cap \gamma_{x_1}$, we see that y is an interior point of $\gamma_x = D_x$.

Thus (2.12), and hence (2.11) is proved.

The next step uses an argument similar to one frequently used by Haefliger.

Step 7. Fix $x \in \Sigma_0$. It is clear that the sets Σ_y vary continuously with $y \in \gamma_x$. That is, if y_1 is close to y_2, and $\{y_1, y_2\} \subset \gamma_x$, then there is a homeomorphism $\Psi : \Sigma_{y_1} \to \Sigma_{y_2}$ such that Ψ is C^0 close to the inclusion $i_{y_2} : \Sigma_{y_2} \to M$. Now each Σ_y, being a homeomorph of an $(n-2)$-sphere in $W^s(y)$, is the boundary of a bounded open path connected set V_y in $W^s(y)$. One can show the V_y vary continuously with y, but we do not need this. Let $\gamma = \gamma_x$. We claim

\begin{equation}
(2.14) \quad B^+(p) \cap V_y \neq \emptyset \quad \text{for all} \quad y \in \gamma.
\end{equation}

Notice that (2.14) implies that $B^+(p) \cap V_{\phi(y)} \neq \emptyset$. But since $\phi(x) \in \Omega_1$, $V_{\phi(y)} \subset \Omega_1$, so $B^+(p) \cap \Omega_1 \neq \emptyset$ which means that $p \in A$. Thus to complete the proof of (2.2.1) we need only prove (2.14).

Proof of (2.14). Let $D = \{y \in \gamma : B^+(p) \cap V_y \neq \emptyset\}$. Clearly, D is open in γ. Since D contains a neighborhood of x in γ, we are done if we prove $\gamma - D$ is open in γ, for then $D = \gamma$.

Let $y \in \gamma - D$. Take a stable product set N_y relative to V_y such that $B^+(p) \cap N_y = \emptyset$. By (2.7), continuous dependence of Σ_y on y, and the definition of V_y, we see that if y_1 is close to y, then $V_{y_1} \subset N_y$. Thus y is an interior point of $\gamma - D$.
REFERENCES.

