Cantor sets and bounded orbits in certain "tent" maps

For a subset E in a metric space, let ∂E denote the boundary of E. This is defined to by

 $\partial E = Closure(E) \setminus Interior(E).$

A subset E in a metric space X is called *totally disconnected* if for each $x \in E$, and each neighborhood U of x there is an open set V with $x \in V \subset U$ such that $\partial V = \emptyset$. A subset E is *perfect* if each point $x \in E$ is an accumulation point of E. That is, for $x \in E$ and any neighborhood V of x there is a point $y \in V \setminus \{x\} \cap E$.

A Cantor set $E \subset X$ is a compact, perfect, totally disconnected set.

Fact. Any two Cantor sets are homeomorphic. For instance, if C is a Cantor set, then so is $C \times C$, so C is, in fact, homeomorphic to $C \times C$.

Example. The set of numbers $x \in [0, 1]$ such that

$$x = \sum_{i=1}^{\infty} \frac{a_i}{3^i}$$

where $a_i = 0$ or $a_i = 2$ for all *i* is a Cantor set. (It is the middle third set).

Let $0 < \alpha < 1$. One can define the middle α -set $F(\alpha)$ in the interval I = [0, 1] as follows.

Let

$$F_1 = I \setminus \left(\frac{1}{2} - \frac{\alpha}{2}, \frac{1}{2} + \frac{\alpha}{2}\right)$$

= $I \setminus ($ interval of length α centered at $\frac{1}{2}$ $)$
= $I_1 \bigcup I_2$ = two disjoint closed intervals

Next, remove the center interval in I_1 of length $\alpha | I_1 |$ to get two remaining closed subintervals I_{11}, I_{12} . Proceed similarly in I_2 to get two closed subintervals I_{21}, I_{22} in I_2 .

Let

$$F_2 = \bigcup_{\substack{a_0 = 1, 2 \\ a_1 = 1, 2}} I_{a_0 a_1}$$

This is a union of four closed intervals in I, and $F_2 \subset F_1$. Continue in this way defining $I_{a_0a_1...a_k}$ such that, for all k,

$$a_i = 1 \text{ or } 2$$

$$I_{a_0a_1...a_{k-1},1}$$
 and $I_{a_0a_1...a_{k-1},2}$

are disjoint closed intervals in $I_{a_0...a_{k-1}}$ obtained by removing the central interval in $I_{a_0...a_{k-1}}$ whose length is $\alpha \mid I_{a_0...a_{k-1}} \mid$.

Let

$$F_k = \bigcup_{a_0 \dots a_k} I_{a_0 \dots a_k},$$

and let $F(\alpha) = \bigcap_{k \ge 1} F_k$.

Observe that $F(\alpha)$ is a Cantor set in I.

т

Now, we consider the tent map $f_A(x) = A(1-2|\frac{1}{2}-x|)$ for A > 1.

This map is piecewise linear, symmetric about $\frac{1}{2}$, has slope equal to |2A| at each point of differentiability, and has the value 0 at x = 0, 1.

Proposition 0.1 For A > 1, the set of bounded orbits for the tent map $f_A(x) = A(1-2|x-\frac{1}{2}|)$ is a Cantor set in [0,1].

Proof. Let us consider the branches f_1, f_2 of the inverse map defined on [0, 1] by the formulas

$$f_1(x) = \frac{x}{2A},$$

and

$$f_2(x) = -\frac{x}{2A} + \frac{1}{2A}.$$

The maps f_1 , f_2 are affine contractions (i.e. affine maps with derivative of absolute value less than 1). Also, f_1 maps [0, 1] bijectively onto the interval $[0, \frac{1}{2A}]$, and f_2 maps [0, 1] bijectively onto $[1 - \frac{1}{2A}, 1]$.

The images $f_1(I)$ and $f_2(I)$ are disjoint.

Define $I_{a_0a_1...a_k} = f_{a_0a_1...a_k}(I)$. It follows easily by induction that if $\mathbf{a} = (a_0a_1...a_k) \neq \mathbf{b} = (b_0b_1...b_k)$, then $I_{a_0a_1...a_k} \cap I_{b_0b_1...b_k} = \emptyset$. Moreover, the length of $I_{b_0b_1...b_k}$ is $(\frac{1}{2A})^{k+1}$.

Let

$$F_k = \bigcup I_{a_0 \dots a_k}$$

Then,

$$F = \bigcap_k F_k$$

is a Cantor set.

Let B denote the set of points x whose forward orbits are bounded. We claim

$$B = F. (1)$$

If $x \in F$, then $f_A^{k+1}(x) \in I$ for each $k \ge 0$, so $F \subset B$. Now, we prove the converse: $B \subset F$.

Figure 1: $f(x) = A(1-2|\frac{1}{2}-x|), A > 1$

Write $f = f_A$. Note that if x is any point which is not in I, then $f^n(x) \to -\infty$. So, any $x \in B$ must lie in I. Let

$$J = I \setminus (I_1 \bigcup I_2).$$

Then, if any forward iterate $f^k(x)$ of x gets into J, then $f^{k+1}(x)$ is not in I, so $f^n(x) \to \infty$.

Now, let x be a point whose forward orbit is bounded. Then, first $x \in I$. If $x \notin F$, then it is in some interval in the complement of F in I.

Any such interval must have the form $f_{a_0a_1...a_k}(J)$ for some finite sequence of $a_i = 1$ or 2.

If follows that $f^{k+1}(x) \in J$. Hence, $f^n(x) \to -\infty$ as $n \to \infty$. This proves that $B \subset F$ as required. QED.