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Hyperbolic Sets

We now extend the structure of the horseshoe to more general kinds of in-
variant sets.

Let r ≥ 1, and let f ∈ Dr(M) where M is a Riemannian manifold. A
compact f−invariant set is called hyperbolic if there are constants C > 0, λ >
1 and a splitting TxM = Eu

x ⊕ Es
x for each x ∈ Λ such that

1. Dfx(E
σ
x ) = Eσ

fx for σ = s, u,

2. for n ≥ 0 and v ∈ Eu
x , we have | Dfn

x (v) | ≥ λn| v |, and

3. for n ≥ 0 and v ∈ Es
x, we have | Df−n

x (v) | ≥ λn| v |.

It can be shown that the conditions above are independent of the choice
of Riemannian norm on M , and that there is a special Riemannian norm so
that the constant C = 1. That is, we have Df−expansion by the factor λ
for each vector in Eu

x and Df−contraction by the factor λ−1 for each vector
in Es

x.
An example of a hyperbolic set is the set Λ =

⋂
n fn(Q) in the horseshoe

diffeomorphism. Another example is a single hyperbolic periodic orbit.
Recall that we have defined the sets

W s(x, f) = {y ∈ M : d(fny, fnx) → 0 as n →∞},

and

W u(x, f) = W s(x, f−1).

The first main theorem about hyperbolic sets is the following.

Theorem 0.1 (Invariant manifold theorem for hyperbolic sets). Let r ≥
1, and let Λ be a hyperbolic set for a Cr diffeomorphism f with hyperbolic
splitting TxM = Eu

x ⊕ Es
x for each x ∈ Λ. Then, the sets W u(x, f) and

W s(x, f) are Cr injectively immersed copies of Euclidean spaces which are
tangent at x to Eu

x and Es
x, respectively. We also have dim W u(x, f) =

dim Eu
x and dim W s(x, f) = dim Es

x.
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The manifolds W u(x, f) and W s(x, f) are called the ustable and stable
manifolds of x in M .

If M = R2 and the subspaces Ex and Eu are one-dimensional, then
these manifolds are Cr injectively immersed curves. This is the case in the
horseshoe diffeomorphism.

Example. Consider the time-one map of the first order planar system
associated to the pendulum equation ẍ + sin(x) = 0.

ẋ = y

ẏ = −sin(x)

Let p be a saddle critical point (for instance the point (0, π)). The stable
and unstable manifolds of p are the orbits which are forward and backward
asymptotic to p together with the point p itself.

An invariant set Λ for a diffeomorphism f is called an isolated invariant
set if there is a compact neighborhood U of Λ in M so that
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⋂
n∈Z

fn(U) = Λ.

Such a neighborhood is called an adapted or isolating neighborhood of Λ.
Again, the set Λ of bounded orbits in the horseshoe diffeomorphism is a

hyperbolic isolated invariant set.
One of the hall-marks of chaotic motion is the concept of sensitive depen-

dence on initial conditions. One says that s map of diffeomorphism exhibits
sensitive dependence on initial conditions on a set Λ if there is an ε > 0 such
that for each x ∈ Λ, there are points y ∈ Λ arbitrarily close to x such that
for some positive integer n > 0, we have d(fnx, fny) > ε. Thus, some points
y arbitrarily close to x have their iterates getting a fixed distance apart from
the iterates of x.

It turns out that any hyperbolic set with periodic points dense exhibits
sensitive dependence on initial conditions at each of its points.

We will call an invariant set exhibiting sensitive dependence on initial
conditions a chaotic invariant set.

There are certain hyperbolic chaotic invariant sets which have a describ-
able structure. We define these next.

Let Λ be a hyperbolic isolated invariant set for an f ∈ D1(M). We say
that Λ is a hyperbolic basic set if the periodic orbits are dense in Λ and f is
topologically transitive on Λ.

The next result states that hyperbolic basic sets are robust under pertur-
bations of the underlying diffeomorphism f .

Theorem 0.2 (Local Stability of Hyperbolic Basic Sets). Let f ∈ Dr(M)
with r ≥ 1, and let Λ be a hyperbolic basic set for f with adapted neighborhood
U . Then, there is a neighborhood N r of f in Dr(M) such that if g ∈ N r,
then the set Λg =

⋂
n∈Z gn(U) is a hyperbolic basic set for g and there is a

homeomorphism h : Λ → Λg such that gh(x) = hf(x) for all x ∈ Λ.

Thus, the whole orbit structure of hyperbolic basic sets is preserved under
small perturbations of f .

This is a striking result. Let us see what it means for the horseshoe
diffeomorphism f .

We defined the map f to take Q into R2 with Λ =
⋂n fn(Q). Note that

Q is not an adapted neighborhood of Λ. However, if we thicken Q slightly
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to the compact set Q′ = βQ with 1 < β < 1 + ε for small ε, then Q′ will
be an adapted neighborhood of Λ. Thus, if g is C1 near f , the whole orbit
structure of f on Λ is available (up to topological conjugacy) for g on the
nearby set

⋂
n gn(Q′).

The robustness of hyperbolic basic sets makes them essential for under-
standing smooth systems.

We now give some more examples of hyperbolic basic sets.
Anosov diffeomorphisms
When the whole manifold M is a hyperbolic set for the diffeomorphism

f , one calls f an Anosov diffeomorphism. We now consider some examples
of this.

Consider the matrix A =

(
2 1
1 1

)
as a linear automorphism of R2.

There are two real eigenvalues λ1 = 3+
√

5
2

, λ2 = 3−
√

5
2

. Note that for a 2 × 2
matrix

B =

(
b11 b12

b21 b22

)
,

with an eigenvalues λ, we can get an associated eigenvector

(
v1

v2

)
from

the equation

(λ− b11)v1 − b12v2 = 0.

Taking v1 = 1, we get v2 = λ−b11
b12

.
Applying this to the matrix A, and writing the eigenvalues and associated

eigenvectors, we have

λ1 =
3 +

√
5

2
,

(
1

λ1−2
1

)
=

(
1

−1+
√

5
2

)
≈
(

1
0.61

)

λ2 =
3−

√
5

2
,

(
1

λ2−2
1

)
=

(
1

−1−
√

5
2

)
≈
(

1
−1.61

)

Observe that λ1 > 1 > λ2 = 1

λ1
.

Let Eu be the subspace of real multiples of

(
1

−1+
√

5
2

)
, and let Es =

(Eu)⊥ be the orthogonal complement of Eu. Then, Es is the set of real
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multiples of

(
1

−1−
√

5
2

)
. We may think of these as subspaces of TxR

2 for

any point x ∈ R2. We write these as Eu
x , Es

x, respectively.

Let π : R2 → T2 be the natural projection onto the two-torus. The
map A has determinant 1, so it induces an automorphism Ã of T2. The
whole two-torus is a hyperbolic basic set for Ã with splitting the projections
Ẽu

πx = Dπx(E
u
x), Ẽs

πx = Dπx(E
s
x) for every x ∈ R2. The unstable manifold

of the point π(x) ∈ T2 is the π−image of line in R2 through x and parallel
to Eu. A similar statement holds for the stable manifold of πx. These lines
have irrational slope in R2, so for each y ∈ T2, W u(y) and W s(y) are dense
in T2.

The above map is called a linear hyperbolic toral automorphism.
The same construction can be give on the n−torus Tn starting with an

n× n matrix A with integer entries, determinant 1, and eigenvalues of norm
different from 1.

These hyperbolic toral automorphisms are, in some sense, diffeomorphic
analogs of the expanding maps of the circle. It follows from the above theorem
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on local stability that they are structurally stable. In addition, they have
dense orbits and a dense set of periodic orbits.

The Solenoid Attractor
Let f ∈ Dr(M) for r ≥ 1. An attractor is a compact invariant topolog-

ically transitive set Λ such that there is a neighborhood U of Λ in M such
that if x ∈ U , then ω(x) ⊂ Λ.

The next example is a hyperbolic attractor in R3 known as the solenoid.
Let C2 be complex two-space, and Consider the map F : C2 → C2 defined

by

F (z, w) = (z2,
z

2
+

w

4
).

Let

U = S1 ×D2 = {(z, w) : | z | = 1 and | w | ≤ 1}.

This may be thought of as a solid torus in R3. The map F is a diffeo-
morphism taking U onto a compact subset U ′ of its interior.

The set U ′ looks like a long thin torus winding twice around the central
circle S1 × {0} in U . The successive interates fn(U) wind around more and
more times and approach a set Λ which is locally the product of a Cantor
set and an interval.

This set Λ is a hyperbolic attractor in R3.
See the figure on the next page.
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