The suspension of a diffeomorphism

We write $\mathcal{D}^r(M)$ for the set of C^r diffeomorphisms from the manifold M to itself. Also, we write $\mathcal{X}^r(M)$ for the C^r vector fields on M.

Let $f \in \mathcal{D}^r(M)$ and $g \in \mathcal{D}^r(N)$. A C^r conjugacy from f to g is a C^r diffeomorphism $h: M \to N$ such that $g = h f h^{-1}$. Thus, a C^r conjugacy is simply a topological conjugacy which happens to be a C^r diffeomorphism. As with all topological conjugacies, the dynamical properties are preserved.

Let M be a C^r manifold, and let $f \in \mathcal{D}^r(M)$. We will show that f is C^r conjugate to the time-one map of a C^r flow on a manifold \tilde{M} where $dim M = dim M + 1.$

We first consider the product $M_1 = \mathbf{R} \times M$. There is a simple flow $\eta(t,(s,x)) = (t+s,x)$ on $\mathbf{R} \times M$ called the *horizontal flow*.

We now obtain our manifold M by identifying the points $(t + 1, x)$ with $(t, f(x))$. That is, we define an equivalence relation \sim in M_1 by

$$
(t, x) \sim (t', x')
$$
 iff $t' = t + n$ and $x' = fn(x)$

for some integer n.

The quotient space $\tilde{M} = M / \sim$ has the structure of a C^r manifold and $dim M = dim M + 1$. The horizontal flow η pushes down to a flow ϕ on M. We leave it as an exercise that if ϕ_1 is the time-one map of the flow ϕ , then the pair (ϕ_1, \tilde{M}) is C^r conjugate to the pair (f, M) .

The manifold M is called the *suspension* or *mapping cylinder* of the pair (f, M) . The flow ϕ_1 is called the suspension of f.

We can describe all suspension flows. Let \tilde{M} be a C^r manifold and $\phi(\cdot,\cdot)$ be a C^{r-1} flow on \tilde{M} . A \tilde{C}^r global cross-section to ϕ is a C^r submanifold M of M with the following properties.

- 1. For each $x \in M$, there are real numbers $\tau_-(x) < 0, \tau_+(x) > 0$ such that $\phi(\tau_-(x), x) \in M$, $\phi(t, x) \notin M$ for $(\tau_-(x) < t < 0$, $\phi(\tau_+(x), x) \in M$, and $\phi(t, x) \notin M$ for $0 < t < \tau_+(x)$. That is, the orbit through $x \in M$ has a first return to x in the forward and backward directions.
- 2. The flow ϕ is transverse to M. That is, for each $x \in M$, the tangent vector to $t \to \phi(t, x)$ at x is not in the tangent space T_xM .

If ϕ has a C^r global cross-section, then it is C^r -conjugate to the suspension flow of the first return map $f : M \to M$.

Let us give some examples of this.

1. Quasi-perodic flow on the two-torus. Let $\alpha \in (0,1)$, and let $f =$ $R_{\alpha}(z) = e^{2\pi i \alpha} z$ be the rotation through angle $2\pi i \alpha$ on the unit circle $M = S¹$. The suspension \tilde{M} is diffeomorphic to the torus \mathbf{T}^2 and the flow ϕ on \tilde{M} is, up to a C^r change of coordinated, obtained in the following way.

Let $X(x, y)$ be the constant vector field on the plane defined by $X(x, y) =$ $(1, \alpha)$ for each $(x, y) \in \mathbb{R}^2$.

Let's write the associated system of differential equations given by X .

$$
\begin{array}{rcl}\n\dot{x} & = & 1 \\
\dot{y} & = & \alpha\n\end{array}
$$

The general solution is given by $\psi(t,(x,y)) = (x + t, y + \alpha t)$.

Thus, the orbits are lines with slope α . The time-one map is the map $(x, y) \rightarrow (x + 1, y + \alpha)$. This maps the line $(x = 0)$ to the line $(x = 1)$ with the y–coordinate being $y \to y + \alpha$. Consider the equivalence relation \sim_1 on \mathbb{R}^2 defined by $(x, y) \sim_1 (x', y')$ iff and only if $x' =$ $x + n$, $y' = y$ for some integer n. The quotient space \mathbb{R}^2 / \sim_1 has a C^{∞} structure which makes it diffeomorphic to the cylinder $S^1 \times \mathbf{R}$. Let $\eta : \mathbb{R}^2 \to \mathbb{R}^2 / \sim_1$ be the natural projection. The flow ψ induces a flow $\psi = \eta_* \psi$ on \mathbb{R}^2 / \sim_1 which has the set $\Sigma = \eta((x = 0))$ as a global cross-section. The first return map to Σ may be thought of as our original rotation f . More precisely, with the induced natural smooth structures, the map f is C^{∞} conjugate to the first return map to Σ .

Any flow induced by the constant vector field $(1, \alpha)$ with α an irrational number is called a *quasi-periodic* flow (or *irrational flow*) on \mathbf{T}^2 . It has many interesting properties. For instance, every orbit is dense in T^2 . It can be shown that every C^r flow $(r \geq 2)$ on \mathbf{T}^2 such that every orbit is dense is topologically conjugate to a quasi-periodic flow.

2. Forced Oscillations of second order differential equations.

Consider the second order differential equation

$$
\ddot{x} + f(x)\dot{(x)} + g(x) = F(t)
$$

where f, g, F are C^r functions and $F(t + 1) = F(t)$ for all t.

Such an equation is called a forced oscillation with periodic forcing function F.

We can form an equivalent first order autonomous system in \mathbb{R}^3 by taking

$$
\dot{x} = y
$$

\n
$$
\dot{y} = -f(x)\dot{x} - g(x) + F(t)
$$

\n
$$
\dot{t} = 1.
$$

Assume that every solution is defined for all time.

Identifying the planes $t = 0$ with $t = 1$, each orbit defines a first return map f from the $t = 0$ plane to itself. Standard results in ODE show that the map f is a C^r diffeomorphism from \mathbb{R}^2 to itself.

Thus, a forced oscillation as above gives us a diffeomorphism $f \in$ $\mathcal{D}^r(\mathbf{R}^2)$. It can be shown that f preserves orientation on \mathbf{R}^2 . That is, $det(Df(x)) > 0$ for each $x \in \mathbb{R}^2$.

Conversely, suppose $f \in \mathcal{D}^r(\mathbf{R}^2)$ preserves orientation. Then, the suspension manifold \tilde{M} is a \tilde{C}^r 3-manifold which is diffeomorphic to $\mathbb{R}^2 \times S^1$, and the map f is C^r conjugate to the time-one map of a C^r flow on $\mathbb{R}^2 \times S^1$.

Thus, up to questions of global existence of solutions, the dynamics (i.e., orbit structure) of forced oscillations with periodic forcing functions is equivalent to the dynamics of planar diffeomorphisms.