The suspension of a diffeomorphism

We write $\mathcal{D}^r(M)$ for the set of C^r diffeomorphisms from the manifold M to itself. Also, we write $\mathcal{X}^r(M)$ for the C^r vector fields on M.

Let $f \in \mathcal{D}^r(M)$ and $g \in \mathcal{D}^r(N)$. A C^r conjugacy from f to g is a C^r diffeomorphism $h: M \to N$ such that $g = hfh^{-1}$. Thus, a C^r conjugacy is simply a topological conjugacy which happens to be a C^r diffeomorphism. As with all topological conjugacies, the *dynamical properties* are preserved.

Let M be a C^r manifold, and let $f \in \mathcal{D}^r(M)$. We will show that f is C^r conjugate to the time-one map of a C^r flow on a manifold \tilde{M} where $\dim \tilde{M} = \dim M + 1$.

We first consider the product $M_1 = \mathbf{R} \times M$. There is a simple flow $\eta(t, (s, x)) = (t + s, x)$ on $\mathbf{R} \times M$ called the *horizontal flow*.

We now obtain our manifold M by identifying the points (t + 1, x) with (t, f(x)). That is, we define an equivalence relation \sim in M_1 by

$$(t, x) \sim (t', x')$$
 iff $t' = t + n$ and $x' = f^n(x)$

for some integer n.

The quotient space $\tilde{M} = M/\sim$ has the structure of a C^r manifold and $\dim \tilde{M} = \dim M + 1$. The horizontal flow η pushes down to a flow ϕ on \tilde{M} . We leave it as an exercise that if ϕ_1 is the time-one map of the flow ϕ , then the pair (ϕ_1, \tilde{M}) is C^r conjugate to the pair (f, M).

The manifold M is called the suspension or mapping cylinder of the pair (f, M). The flow ϕ_1 is called the suspension of f.

We can describe all suspension flows. Let M be a C^r manifold and $\phi(\cdot, \cdot)$ be a C^{r-1} flow on \tilde{M} . A C^r global cross-section to ϕ is a C^r submanifold M of \tilde{M} with the following properties.

- 1. For each $x \in M$, there are real numbers $\tau_{-}(x) < 0, \tau_{+}(x) > 0$ such that $\phi(\tau_{-}(x), x) \in M, \ \phi(t, x) \notin M$ for $(\tau_{-}(x) < t < 0, \ \phi(\tau_{+}(x), x) \in M, \ and \ \phi(t, x) \notin M$ for $0 < t < \tau_{+}(x)$. That is, the orbit through $x \in \tilde{M}$ has a first return to x in the forward and backward directions.
- 2. The flow ϕ is transverse to M. That is, for each $x \in M$, the tangent vector to $t \to \phi(t, x)$ at x is not in the tangent space $T_x M$.

If ϕ has a C^r global cross-section, then it is C^r -conjugate to the suspension flow of the first return map $f: M \to M$.

Let us give some examples of this.

1. Quasi-perodic flow on the two-torus. Let $\alpha \in (0,1)$, and let $f = R_{\alpha}(z) = e^{2\pi i \alpha} z$ be the rotation through angle $2\pi i \alpha$ on the unit circle $M = S^1$. The suspension \tilde{M} is diffeomorphic to the torus \mathbf{T}^2 and the flow ϕ on \tilde{M} is, up to a C^r change of coordinated, obtained in the following way.

Let X(x, y) be the constant vector field on the plane defined by $X(x, y) = (1, \alpha)$ for each $(x, y) \in \mathbf{R}^2$.

Let's write the associated system of differential equations given by X.

$$\begin{array}{rcl} \dot{x} & = & 1 \\ \dot{y} & = & \alpha \end{array}$$

The general solution is given by $\psi(t, (x, y)) = (x + t, y + \alpha t)$.

Thus, the orbits are lines with slope α . The time-one map is the map $(x, y) \rightarrow (x + 1, y + \alpha)$. This maps the line (x = 0) to the line (x = 1) with the y-coordinate being $y \rightarrow y + \alpha$. Consider the equivalence relation \sim_1 on \mathbf{R}^2 defined by $(x, y) \sim_1 (x', y')$ iff and only if x' = x + n, y' = y for some integer n. The quotient space \mathbf{R}^2 / \sim_1 has a C^{∞} structure which makes it diffeomorphic to the cylinder $S^1 \times \mathbf{R}$. Let $\eta : \mathbf{R}^2 \rightarrow \mathbf{R}^2 / \sim_1$ be the natural projection. The flow ψ induces a flow $\tilde{\psi} = \eta_\star \psi$ on \mathbf{R}^2 / \sim_1 which has the set $\Sigma = \eta((x = 0))$ as a global cross-section. The first return map to Σ may be thought of as our original rotation f. More precisely, with the induced natural smooth structures, the map f is C^{∞} conjugate to the first return map to Σ .

Any flow induced by the constant vector field $(1, \alpha)$ with α an irrational number is called a *quasi-periodic* flow (or *irrational flow*) on \mathbf{T}^2 . It has many interesting properties. For instance, every orbit is dense in \mathbf{T}^2 . It can be shown that every C^r flow $(r \ge 2)$ on \mathbf{T}^2 such that every orbit is dense is topologically conjugate to a quasi-periodic flow.

2. Forced Oscillations of second order differential equations.

Consider the second order differential equation

$$\ddot{x} + f(x)(x) + g(x) = F(t)$$

where f, g, F are C^r functions and F(t+1) = F(t) for all t.

Such an equation is called a *forced oscillation* with periodic forcing function F.

We can form an equivalent first order autonomous system in \mathbb{R}^3 by taking

$$\dot{x} = y \dot{y} = -f(x)\dot{x} - g(x) + F(t) \dot{t} = 1.$$

Assume that every solution is defined for all time.

Identifying the planes t = 0 with t = 1, each orbit defines a *first return* map f from the t = 0 plane to itself. Standard results in ODE show that the map f is a C^r diffeomorphism from \mathbf{R}^2 to itself.

Thus, a forced oscillation as above gives us a diffeomorphism $f \in \mathcal{D}^r(\mathbf{R}^2)$. It can be shown that f preserves orientation on \mathbf{R}^2 . That is, det(Df(x)) > 0 for each $x \in \mathbf{R}^2$.

Conversely, suppose $f \in \mathcal{D}^r(\mathbf{R}^2)$ preserves orientation. Then, the suspension manifold \tilde{M} is a C^r 3-manifold which is diffeomorphic to $\mathbf{R}^2 \times S^1$, and the map f is C^r conjugate to the time-one map of a C^r flow on $\mathbf{R}^2 \times S^1$.

Thus, up to questions of global existence of solutions, the dynamics (i.e., orbit structure) of forced oscillations with periodic forcing functions is equivalent to the dynamics of planar diffeomorphisms.