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The Schwarzian Derivative

There is a very useful quantity Sf defined for a C3 one-dimensional map f ,
called the Schwarzian derivative of f .

Here is the definition.
Set

Sf(x) =
f ′′′(x)

f ′(x)
− 3

2

(
f ′′(x)

f ′(x)

)2

. (1)

Here we use f ′(x), f ′′(x), f ′′′(x) to denote the first, second, and third
derivatives of f at x, respectively.

Using Df to denote the derivative function of f , we can also write Sf as

Sf(x) = D2[(log Df)]− 1

2
(D log Df)2. (2)

Definition. A map C3 f has negative Schwarzian derivative if the quan-
tity Sf(x) is negative at any point x for which f ′(x) 6= 0.

In this case, we write Sf < 0.
It turns out that maps with negative Scwarzian derivative have many

useful and interesting properties.
Before proceeding, not that any quadratic map has negative Schwarzian

derivative.
There is a simpler quantity Nf which is related to the Scwarzian deriva-

tive. Let us define the nonlinearity of f at x to be the quantity

Nf (x) = (DlogDf)(x)

=
f ′′(x)

f ′(x)
.

With these definitions, it is easy to compute that

Sf(x) = N ′
f (x)− 1

2
(Nf (x))2.

Observe that Nf gives a measure of how far the map f is from being
affine.

For instance, if I is an interval in which f ′(x) does not vanish, then Nf (x)
vanishes in I if and only if f ′′(x) vanishes in I. This means that f(x) is an
affine function in I; i.e., f(x) = ax + b for some constants a and b.
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For an affine function f(x), the ratio of derivatives f ′(x)
f ′(y)

equals 1 in any

interval where f ′ never vanishes.
The next proposition shows that an upper bound for Nf (x) gives an

upper bound on the ratio of derivatives f ′(x)
f ′(y)

on any interval in which f ′

never vanishes.

Proposition 0.1 Let f be a C2 function defined in an interval I and assume
that f ′(x) 6= 0 for every x ∈ I. Suppose there is a constant K > 0 such that
| Nf (x) | ≤ K for every x ∈ I.

Then, for any two points x, y ∈ I, we have

f ′(x)

f ′(y)
≤ exp(K| x− y |). (3)

Proof.
Let x and y be in I. Since
Since f ′ never vanishes in I, we have that f ′(x) and f ′(y) have the same

sign in I.
Since

f ′(x)

f ′(y)
=
−f ′(x)

−f ′(y)
,

we may assume that f ′(x) > 0.
Using the Mean Value Theorem for log(f ′(x)), there is a point θ bewteen

in the interval between x and y such that

log
f ′(x)

f ′(y)
= log f ′(x)− log f ′(y)

=
f ′′(θ)

f ′(θ)
| x− y |

≤ K| x− y |.

Taking exponentials of both sides gives (3) as required. QED.
The next propositions give some of the basic properties of the Schwarzian

derivative.
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Proposition 0.2 ( Composition Rule) Let f and g be two C3 self-maps
of an interval I. Then, for each x ∈ I,

S(f ◦ g)(x) = (Sf ◦ g)(x)(Dg(x))2 + Sg(x). (4)

Corollary 0.3 Suppose the Sf < 0. Then, for any positive integer n, we
also have Sfn < 0.

Exercises:

1. Prove Proposition 0.2

2. Let f(x) be a real polynomial of degree n with n distinct real zeroes.
Prove that f has negative Schwarzian derivative.

3. Consider the function f(x) = a xne−bx where a and b are positive real
numbers and n is a positive integer. With the help of Mathematica (or
directly if you prefer), give a proof that Sf < 0.

4. Using Mathematica, investigate the orbit structures of the maps in the
previous exercise. Make plots of the maps, and several iterates. Check
for attracting, expanding periodic points of low period, etc., for various
a′s and b′s.

Remark. The program Mathematica can be useful for actually prov-
ing various things. For instance, we illustrate this with a short notebook
“Schwarzian-comp-1.nb.” which you can download and experiment with.

In all cases, when we write Sf for a function f , we assume that f is of
class Ck with k ≥ 3.

Lemma 0.4 (Minimum Principle) Suppose Sf < 0 in a interval I and
f ′(x) 6= 0 for each x in I. Then, | f ′(x) | has no local minimum in the
interior of I.

Proof.
Since Sf = S(−f), we may assume that f ′(x) > 0 in I. Suppose there

were a point x0 in the interior of I which is a local minimum of f ′. Then,
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f ′′(x0) = 0. Since, Sf < 0, this gives that f ′′′(x0)f
′(x0) < 0. Since f ′(x0) >

0, we have that f ′′′(x0) < 0. This means that the second derivative of f ′

at x0 is negative, so f ′ has a local maximum at x0. The only way f ′ could
have both a local maximum and a local minimum at x0 is to be constant in
a neighborhood of x0. But then Sf would be zero in a neighborhood of x0

which would contradict Sf < 0 in I. This proves the Lemma. QED.
Definition. Let p be an attracting fixed point of a map f : I → I

where I is some interval. The basin of p is the set of points y ∈ I such that
fn(y) → p as n →∞. The immediate basin of p is the connected component
of the basin of p containing p. If O(p) is an attracting periodic orbit, its
basin is the set of points y such that ω(y) = O(p). Its immediate basin is
the union of the connected components of the basin which contain a point of
O(p). A periodic point p of period n is called neutral if | Dfn(p) | = 1.

A neutral fixed point p is called isolated if there is a neighborhood U of
p such that f(x) 6= x for x ∈ U \ {p}. A neutral periodic point p of period n
is said to be isolated if it is isolated as a fixed point of fn. Note that if p is
an isolated neutral periodic point, then there is a neighborhood U of p such
that if x ∈ U \ {p}, then either ω(x) = O(p) or α(x) = O(p). If there is a
neighborhood U of p and an x ∈ U such that ω(x) = O(p), then we say that
p is attracting from one at least one side. It may be that a neutral periodic
point is attracting from one, both, or neither side. If it is attracting from one
side, we define the basin of O(p) to be B(O(p)) = {x ∈ N : ω(x) = O(p). The
immediate basin of p is the union of the connected components of B(O(p))
containing a point of O(p).

Note that basins of attracting fixed points are open sets.
Since non-empty open sets in R are at most countable disjoint unions

of open intervals, it follows that the immediate basin of an attracting fixed
point is an open interval.

The following proposition is one of the main reasons for the importance
of the property of negative Schwarzian derivative.

Theorem 0.5 (D. Singer) Suppose f : I → I is a C3 self-map of a non-
trivial closed interval in the real line with Sf < 0 in I. Then,

1. the immediate basin of any attracting periodic orbit contains either a
critical point of f or a boundary point of the interval I,

2. each neutral periodic point is attracting at least from one side, its im-
mediate basin contains either a critical point or a boundary point of I,
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and

3. there exists no interval of periodic points.

In particular, the number of non-repelling periodic orbits is bounded by
two plus the number of critical points.

Proof.
We begin with the first statement in the Theorem.
Let p be an attracting periodic point which has no boundary point in

its immediate basin. Let n be the period of p and let T be the connected
component of its basin containing p.

Let B(p) be the basin of p for fn.
Note that T is the union of the open intervals in B(p) which contain p.

(Exercise).
Then, fn(T ) ⊆ T . It follows that fn(∂T ) ⊆ Closure(T ). If fn(∂T )

⋂
T 6=

∅, then some boundary point of I would be in T . Since, we have assumed
that this is not true, we must have that fn(∂T ) ⊆ ∂T .

Claim. There is a point x ∈ T such that Dfn(x) = 0.
Assume the claim for the moment. By the Chain Rule, we have

Dfn(x) = Df(fn−1x)Df(fn−1x) . . . Df(x),

so there must be a j ∈ [0, n− 1) such that Df(f jx) = 0. Thus, f j(x) is
a critical point in f j(T ) which is the immediate basin of f j(p).

Hence, to prove the first statement of the theorem, we must prove the
Claim.

Suppose, by way of contradiction, that the Claim is false. Then, Dfn(x) 6=
0 for all x ∈ T .

We either have f Dfn(x) > 0 for all x ∈ T or Dfn(x) < 0 for all x ∈ T .
In any case

Df 2nx > 0 for each x ∈ T. (5)

Also, f 2n fixes both boundary points of T .
Note that the boundary points of T cannot be attracting periodic points

of f 2n because then there would be points in T which are not in the basin of
p. Hence, Df 2n(x) ≥ 1 at both boundary points of T .
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Since 0 < Df2n(p) < 1, Moving x across T from left to right, we find that
Df 2n(x) goes from being greater than or equal to one, to being less than one,
and back to being greater than or equal to one.

Hence, | Df 2n | must have a local minimum in T . Since Sf 2n < 0, this is
impossible, and the Claim is proved.

For the first part of statement 2, assume that there is a neutral periodic
point p of period n which is not attracting from either side for fn. Then,
Df 2n(x) ≥ 1 for all x close to p. But, then Df 2n must have a minimum at
p which is impossible.

Now assume that p is a neutral periodic point of period n which is attract-
ing from at least one side. As in the attracting case, if T is the immediate
basin of O(p), then either T contains a boundary point of I, or f 2n fixes ∂T .
Now, the proof that T contains a critical point is similar to the case of an
attracting periodic point. If not, then Df 2n would have a local minimum in
T which is impossible. the

The same reasoning (existence of a local minimum of | Df 2n | for some
n > 0) applies if there is an interval of periodic points. QED.


