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21. Periodic Functions and Fourier Series

1 Periodic Functions

A real-valued function f(x) of a real variable is called periodic of period T > 0
if f(x+ T ) = f(x) for all x ∈ R.

For instance the functions sin(x), cos(x) are periodic of period 2π. It is
also periodic of period 2nπ, for any positive integer n. So, there may be
infinitely many periods. If needed we may specify the least period as the
number T > 0 such that f(x + T ) = f(x) for all x, but f(x + s) 6= f(x) for
0 < s < T .

For later convenience, let us consider piecewise C1 functions f(x) which
are periodic of period 2L > 0 where L is a positive real number. Denote this
class of functions by PerL(R).

Note that for each integer n, the functions cos(nπx
L

), sin(nπx
L

) are in ex-
amples of such functions. Also, note that if f(x), g(x) ∈ PerL(R), and α, β
are constants, then αf + βg is also in PerL(R).

In particular, any finite sum

a0

2
+

k∑
m=1

(
am cos(

mπx

L
) + bm sin(

mπx

L
)
)

is in PerL(R). Here the numbers a0, am, bm are constants.

2 Fourier Series

The next result shows that in many cases the infinite sum

f(x) =
a0

2
+
∞∑
m=1

(
am cos(

mπx

L
) + bm sin(

mπx

L
)
)

(1)

determines a well-defined function f(x) which again is in PerL(R).
An infinite sum as in formula (1) is called a Fourier series (after the French

engineer Fourier who first considered properties of these series).
Fourier Convergence Theorem. Let f(x) be a piecewise C1 function

in PerL(R). Then, there are constants a0, am, bm (uniquely defined by f)
such that at each point of continuity of f(x) the expression on the right side
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of (1) converges to f(x). At the points y of discontinuity of f(x), the series
converges to

1

2
(f(y−) + f(y+)).

The values f(y−), f(y+) denote the left and right limits of f as x → y,
respectively.

That is,

f(y−) = limx→y,x<yf(x), f(y+) = limx→y,x>yf(x).

Since the expression on the right side of (1) does not always converge to
the value of f at each x, one often writes

f ∼ a0

2
+
∞∑
m=1

(
am cos(

mπx

L
) + bm sin(

mπx

L
)
)

(2)

and calls (2) the Fourier expansion of f .
It turns out that the constants a0, am, bm above are determined by the

formulas

a0 =
1

L

∫ L

−L
f(x)dx (3)

am =
1

L

∫ L

−L
f(x) cos(

mπx

L
)dx, and (4)

bm =
1

L

∫ L

−L
f(x) sin(

mπx

L
)dx. (5)

We will justify this a bit later, but for now, let us use these formulas to
compute some Fourier series. The constants a0, am, bm are called the Fourier
coefficients of f .

Example 1. Let f(x) be defined by

f(x) =

{
−x, −2 ≤ x < 0
x, 0 ≤ x < 2

f(x+ 4) = f(x) for all x.

Determine the Fourier coefficients of f .



December 7, 2012 21-3

Note that the graph of this function f(x) looks like a “triangular wave.”
Here L = 2, and we compute

a0 =
1

2

∫ 0

−2
(−x)dx+

1

2

∫ 2

0
xdx

= 1 + 1 = 2,

and, for m > 0,

am =
1

2

∫ 0

−2
(−x) cos(

mπx

2
)dx+

1

2

∫ 2

0
x cos(

mπx

2
)dx

bm =
1

2

∫ 0

−2
(−x) sin(

mπx

2
)dx+

1

2

∫ 2

0
x sin(

mπx

2
)dx.

To compute these integrals, we note that, integration by parts gives the
formulas

∫
x cos(ax)dx =

x

a
sin(ax)−

∫ sin(ax)

a
dx

=
x

a
sin(ax) +

cos(ax)

a2∫
x sin(ax)dx = −x

a
cos(ax) +

sin(ax)

a2

After some calculation, we get

am =

{
− 8

(mπ)2
, m odd

0, m even
and bm = 0 for all m. We will see later that this last fact follows from

the fact that f(−x) = f(x) for all x.
You will be asked to find various Fourier series in the homework.

3 Justification of the Fourier coefficient for-

mulas

We need the following basic facts about the integrals of certain products of
sines and cosines.
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∫ L

−L
cos(

mπx

L
)cos(

nπx

L
)dx =


0, m 6= n,
L, m = n 6= 0,

2L, m = n = 0
(6)

∫ L

−L
cos(

mπx

L
) sin(

nπx

L
)dx = 0 for all m,n; (7)

∫ L

−L
sin(

mπx

L
) sin(

nπx

L
)dx =


0, m 6= n,
L, m = n 6= 0,
0, m = n = 0

(8)

We justify formula (8), leaving the other similar calculations to the reader.
First recall some formulas related to the sine and cosine functions.

The sum and difference formulas are:

cos(α + β) = cos(α)(cos(β)− sin(α) sin(β) (9)

cos(α− β) = cos(α)(cos(β) + sin(α) sin(β). (10)

Applying the first formula with α = β gives

cos(2α) = cos(α)2 − sin(α)2

This implies that

1 + cos(2α) = cos(α)2 + sin(α)2 + cos(α)2 − sin(α)2

= 2 cos(α)2

or the so-called cosine half-angle formula

cos(α)2 =
1

2
(1 + cos(2α)).

Similarly, the sine half-angle formula is

sin(α)2 =
1

2
(1− cos(2α)).

Formulas (9) and (10) imply that
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cos(α− β)− cos(α + β) = 2 sin(α) sin(β).

Using α = nx, β = mx then gives

cos((n−m)x)− cos((n+m)x) = 2 sin(nx) sin(mx). (11)

This implies, for m 6= n and both positive,

∫ L

−L
sin(

mπx

L
) sin(

nπx

L
)dx =

1

2

∫ L

−L
cos(

(m− n)πx

L
)dx

−1

2

∫ L

−L
cos(

(m+ n)πx

L
)dx

=
L

2π

sin( (m−n)πx
L

)

m− n
−

sin( (m+n)πx
L

)

m+ n

L
−L

= 0.

If m = n = 0, then∫ L

−L
sin(

mπx

L
) sin(

mπx

L
)dx =

∫ L

−L
0 dx = 0,

while if m = n 6= 0, we have

∫ L

−L
sin(

mπx

L
) sin(

mπx

L
)dx =

∫ L

−L

(
sin(

mπx

L
)
)2

dx

=
1

2

∫ L

−L

[
1− cos(

2mπx

L
)
]
dx

=
1

2

[
x−

sin(2mπx
L

)
2mπ
L

]L
−L

= L.

Now, suppose that

f(x) =
a0

2
+
∑
m≥1

am cos(
mπx

L
) + bm sin(

mπx

L
). (12)
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Since the integrals of cosine and sine functions over intervals of lengths
equal to their periods vanish, we have

∫ L

−L
f(x)dx =

∫ L

−L
(
a0

2
+
∑
m≥1

am cos(
mπx

L
) + bm sin(

mπx

L
))dx

=
a0

2
(2L) +

∑
m≥1

∫ L

−L
am cos(

mπx

L
)dx

+
∑
m≥1

∫ L

−L
bm sin(

mπx

L
)dx

= a0L

Analogously, using the orthogonality relations above, we have that, for
n ≥ 1,

∫ L

−L
f(x) cos(

nπx

L
)dx =

∫ L

−L
cos(

nπx

L
)(
a0

2
+
∑
m≥1

am cos(
mπx

L
))dx

+
∫ L

−L
cos(

nπx

L
)(
∑
m≥1

bm sin(
mπx

L
))dx

= anL

which gives (4). Formula (5) is justified in a similar way.

4 Even and Odd functions

A function f(x) is called even if f(−x) = f(x) for all x. Analogously, a
function f(x) is called odd if f(−x) = −f(x) for all x. For example, cos(x)
is even, and sin(x) is odd.

Also, one sees easily that linear combinations of even (odd) functions are
again even (odd).

The following facts are useful.

1. The product of two odd functions is even.

2. The product of two even functions is even.

3. The product of and even function and an odd function is odd.
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Now, let F be an even function in PerL(R), and let G be an odd function
in PerL(R).

It follows that, for n ≥ 0, we have

4. F (x)cos(nπx
L

) is even,

5. F (x)sin(nπx
L

) is odd,

6. G(x)cos(nπx
L

) is odd, and

7. G(x)sin(nπx
L

) is even.

Let us compute the Fourier coefficients of the even function F and the
odd function G.

Then, using the change of variables u = −x, we see that∫ 0

−L
F (x) dx =

∫ L

0
F (x)dx

and ∫ 0

−L
G(x) dx = −

∫ L

0
G(x)dx,

Hence,∫ L

−L
F (x) dx =

∫ 0

−L
F (x) dx+

∫ L

0
F (x)dx = 2

∫ L

0
F (x)dx, (13)

and

∫ L

−L
G(x) dx =

∫ 0

−L
G(x) dx+

∫ L

0
G(x)dx = −

∫ L

0
G(x)dx+

∫ L

0
G(x)dx = 0

(14)
As a consequence, we get the following simplified formulas of the Fourier

coefficients of even and odd functions.
Let F be an even function with Fourier coefficients an for n ≥ 0 and bn

for n ≥ 1.
Then, bn = 0 for all n ≥ 1, and

an =
2

L

∫ L

0
F (x) cos

(
nπx

L

)
dx for all n ≥ 0 (15)
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Similarly, if G(x) is an odd function with Fourier coefficients an for n ≥ 0
and bn for n ≥ 1, then an = 0 for all n ≥ 0, and

an =
2

L

∫ L

0
G(x) sin

(
nπx

L

)
dx for all n ≥ 0 (16)

In particular, the fourier series of an even function only has cosine terms
and the fourier series of an odd function only has sine terms.

5 The Fourier Series of Even and Odd exten-

sions

For each real number α we define the α−translation function Tα by Tα(x) =
x+ α for all x.

Let L > 0, and let I = [−L,L). Notice that the collection of 2nL
translates of I as n goes through the integers gives a disjoint collection of
intervals, each of length 2L, which cover the whole real line R.

That is, if Z is the set of integers {0, 1,−1, 2,−2, . . .}, then

R =
⋃
n∈Z

T2nL(I)

Another way to say this is that, for each x ∈ R, there is a unique integer
nx and a unique point yx ∈ I such that x = yx + 2nxL.

Now, consider a real-valued function f defined on the interval I = [−L,L).
There is a unique function F of period 2L defined on all of R obtained by
taking any x ∈ R and setting F (x) to be f(yx). This function F is called
the periodic 2L− extension of f . Sometimes, we leave out the L and call F
simply the periodic extension of f .

If f is piecewise C1, then F is in Per(L) and has a Fourier series.
Now, consider a piecewise C1 function f defined on [0, L).
The even extension F of f to [−L,L) is the function defined by

F (x) =

{
f(x) if x ∈ [0, L)
f(−x) if x ∈ [−L, 0)

and the odd extension G of f to [−L,L) is the function defined by

G(x) =

{
f(x) if x ∈ [0, L)
−f(−x) if x ∈ [−L, 0)
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From formulas (15) and (16) we obtain the following formulas for the
Fourier coefficients of the even and odd extensions of f .

Even case:

F ∼ a0

2
+
∞∑
m=1

(
am cos(

mπx

L
) + bm sin(

mπx

L
)
)

bm = 0, am =
2

L

∫ L

0
f(x)cos

(
2πmx

L

)
dx

Odd case:

G ∼ a0

2
+
∞∑
m=1

(
am cos(

mπx

L
) + bm sin(

mπx

L
)
)

am = 0, bm =
2

L

∫ L

0
f(x)sin

(
2πmx

L

)
dx

Example 1.
Compute the Fourier Series of the even extension F (x) of the function

f(x) such that

f(x) =

{
3 if 0 ≤ x < 2
6 if 2 ≤ x < 5

and F (x+ 10) = F (x) for all x.
Solution
Since F is even, bn = 0 for all n ≥ 1, and, for n ≥ 0,

an =
2

5

∫ 5

0
f(x)cos(

nπx

5
)dx

=
2

5

(∫ 2

0
3cos(

nπx

5
)dx+

∫ 5

2
6cos(

nπx

5
)dx

)
=

2

5

(
15

nπ

[
sin(nπx/5) |x=2

x=0

]
+

30

nπ

[
sin(nπx/5 |x=5

x=2

])
=

2

5

(
15

nπ
[sin(nπ2/5)] +

30

nπ
[sin(nπ)− sin(nπ2/5)]

)
=

2

5

(
15

nπ
[sin(nπ2/5)] +

30

nπ
[−sin(nπ2/5)]

)
Remark. In submitting answers to the WebWork problems on Fourier

series, you must remove expressions like sin(n∗π) or cos(π∗(2n−1)/2). When
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n is an integer these are equal to 0, but WebWork checks these functions at
non-integral points and does not give the zero value to them. Hence, e.g., if
the sin(n ∗ π) of the last example is left in, WebWork will mark the answer
as incorrect.

Example 2.
Compute the Fourier Series of the odd extension F (x) of the function

f(x) such that

f(x) =

{
3 if 0 ≤ x < 4
−2 if 4 ≤ x < 6

and F (x+ 12) = F (x) for all x.
Since this is similar to Example 1, we only set up the necessary integrals

and leave their computation to the reader.
Since F is odd, an = 0 for all n ≥ 0, and, for n ≥ 0,

bn =
2

6

∫ 6

0
f(x)sin(

nπx

6
)dx

=
2

6

(∫ 4

0
3cos(

nπx

6
)dx+

∫ 6

4
(−2)cos(

nπx

6
)dx

)

6 Orthogonal Functions

Let v = (a1, a2, . . . , an), w = (b1, b2, . . . , bn) be vectors in Rn. The standard
dot product of v and w is the number

v · w =
n∑
i=1

aibi

Let us also denote this by < v,w > and call it the standard inner product
of v and w.

This has the properties that

1. < v, v > ≥ 0 for all vectors v and < v, v >= 0 if and only if v = 0

2. < v,w >=< w, v > for all vectors v, w

3. < av + bw, u >= a < v, u > +b < w, u > for all vectors u, v, w and
scalars a, b.
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The norm or length of v =
√
< v, v >.

Definition. Let 1 ≤ k ≤ n be a collection {v1, v2, . . . , vk} of vectors in
Rn. The collection is called an orthogonal set of vectors in Rn if < vi, vj >= 0
for all i 6= j.

The collection V = {v1, v2, . . . , vk} is called an orthonomal set of vectors
if it is an orthogonal set and each vector has length 1.

If w can be expressed as a linear combination

w = a1v1 + a2v2 + . . .+ akvk

and {v1, v2, . . . , vk} is an orthogonal set, then we can determine the coef-
ficients ai of w as follows. Using orhogonality, we have

< w, vi > = < a1v1 + a2v2 + . . .+ akvk, vi >

= < a1v1, vi > + < a2v2, vi > + . . .+ < akvk, v1 >

= ai < vi, vi >

Thus,

ai =< w, vi > / < vi, vi > . (17)

In the case that our orthogonal set V contains n vectors, then any vector
w can be uniquely expressed as w =

∑n
i=1 aivi and the coefficients ai can be

determined from (17).
Definition. An orthogonal set V of vectors in Rn is called complete if

every vector w in Rn can be written uniquely as a linear combination of
elements in V .

The previous comments state that any orthogonal set of n vectors in Rn

is complete.
We wish to apply these concepts to function spaces.

Let L > 0 and let F def
= F([−L,L]) denote the set of piecewise continuous

functions on [−L,L].
We define an inner product on F by

< f, g >=
1

L

∫ L

−L
f(x)g(x)dx

This has some of the usual properties of the dot product on Rn.
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1. < f, f > ≥ 0 for f ∈ F

2. < af + bg, h >= a < f, g > +b < g, h > for f, g, h ∈ F and a, b
constants

Note: Since f is only piecewise continuous, it does not follow that

< f, f >= 0

implies that f is the zero function. It is only zero off a finite set of points.
If f were continuous and < f, f >= 0, then it would imply that f(x) = 0
for all x ∈ [−L,L], but in applications, the condition that we only deal with
continuous functions is too restrictive.

Now consider the functions cos(nπx/L), sin(nπx/L) for n = 0, 1, 2, . . ..
Note that if n = 0, then cos(nπx/L) = 1 for all x, and sin(nπx/L) = 0

for all x.
The justification of Fourier series in section 3 shows that the set of func-

tions

{cos(nπx/L), n = 1, 2, . . .}
⋃
{sin(nπx/L), n = 1, 2, 3, . . .}

forms an orthonormal set of functions in F with respect the the inner
product < ·, · > on F we have just defined.

If we add the constant function 1, then we can express every function
f ∈ F (up to finitely many exceptional points) as (an infinite sum)

f(x) = c0 cos(0πx/L) +
∞∑
n=1

(ancos(nπx/L) + bnsin(nπx/L)) (18)

Here the coefficients are the costants c0, a1, a2, . . . , b1, b2, . . .. We have
denoted the constant term by c0 instead of a0/2 for a reason which we now
explain.

The expression (18) is just the Fourier series of f .
Let us determine the coefficients in the way we did for orthogonal sets in

Rn.
Since, for any n > 0 we have

< cos(0πx/L), cos(nπx/L) > = < cos(0πx/L), sin(nπx/L) >= 0,
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we get

< f(x), cos(0πx/L) > =
1

L

∫ L

−L
f(x)cos(0πx/L)dx

=
1

L

∫ L

−L
f(x)dx

=
1

L

∫ L

−L
c0dx

= 2c0

Since

a0 =
1

L

∫ L

−L
f(x)dx,

we have that c0 = a0

2
.

Thus, we write the constant term in the Fourier series as a0

2
so that the

formulas in terms of integrals for the Fourier coefficients then always have
the factor 1

L
times an integral from −L to L.

Similarly,

an = < f(x), cos(nπx/L) >

=
1

L

∫ L

−L
f(x)cos(nπx/L)dx

and

bn = < f(x), sin(nπx/L) >

=
1

L

∫ L

−L
f(x)sin(nπx/L)dx

Thus, if we list the functions cos(nπ/x), n = 0, 1, 2, . . . and sin(nπx/L), n =
1, 2, . . . in one single list as {f0, f1, f2, . . .}, where f0 is the function which is
equal to 1 everywhere, then the Fourier series for f can be expressed as

f(x) ∼ c0f0 + c1f2 + . . .+ (19)

where
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cn =< f, fn >

for all n > 0.
The reason we did not use an equality in (19) is that f(x) is only equal to

the right hand side off a (possibly empty) finite set of points in each closed
interval. As we said before, we do not have equality unless f is continuous.

Remark Note that the set {1, cos(nπx/L), sin(nπx/L), n = 1, 2, 3, . . .}
is almost orthonormal. It fails to be an orthonormal set only because the
constant function 1 is not a unit vector. Its length is 2. This is not very
important for our purposes.


