21. Periodic Functions and Fourier Series

1 Periodic Functions

A real-valued function $f(x)$ of a real variable is called *periodic of period* $T > 0$ if $f(x+T) = f(x)$ for all $x \in \mathbf{R}$.

For instance the functions $sin(x), cos(x)$ are periodic of period 2π . It is also periodic of period $2n\pi$, for any positive integer n. So, there may be infinitely many periods. If needed we may specify the least period as the number $T > 0$ such that $f(x+T) = f(x)$ for all x, but $f(x+s) \neq f(x)$ for $0 < s < T$.

For later convenience, let us consider piecewise $C¹$ functions $f(x)$ which are periodic of period $2L > 0$ where L is a positive real number. Denote this class of functions by $Per_L(\mathbf{R})$.

Note that for each integer n, the functions $\cos(\frac{n\pi x}{L})$, $\sin(\frac{n\pi x}{L})$ are in examples of such functions. Also, note that if $f(x), g(x) \in Per_L(\mathbf{R})$, and α, β are constants, then $\alpha f + \beta g$ is also in $Per_L(\mathbf{R})$.

In particular, any finite sum

$$
\frac{a_0}{2} + \sum_{m=1}^{k} \left(a_m \cos\left(\frac{m\pi x}{L}\right) + b_m \sin\left(\frac{m\pi x}{L}\right) \right)
$$

is in $Per_L(\mathbf{R})$. Here the numbers a_0, a_m, b_m are constants.

2 Fourier Series

The next result shows that in many cases the infinite sum

$$
f(x) = \frac{a_0}{2} + \sum_{m=1}^{\infty} \left(a_m \cos\left(\frac{m\pi x}{L}\right) + b_m \sin\left(\frac{m\pi x}{L}\right) \right) \tag{1}
$$

determines a well-defined function $f(x)$ which again is in $Per_L(\mathbf{R})$.

An infinite sum as in formula (1) is called a Fourier series (after the French engineer Fourier who first considered properties of these series).

Fourier Convergence Theorem. Let $f(x)$ be a piecewise $C¹$ function in Per_L(**R**). Then, there are constants a_0 , a_m , b_m (uniquely defined by f) such that at each point of continuity of $f(x)$ the expression on the right side December 7, 2012 21-2

of (1) converges to $f(x)$. At the points y of discontinuity of $f(x)$, the series converges to

$$
\frac{1}{2}(f(y-)+f(y+)).
$$

The values $f(y-), f(y+)$ denote the left and right limits of f as $x \to y$, respectively.

That is,

$$
f(y-) = lim_{x \to y, x < y} f(x), \quad f(y+) = lim_{x \to y, x > y} f(x).
$$

Since the expression on the right side of (1) does not always converge to the value of f at each x , one often writes

$$
f \sim \frac{a_0}{2} + \sum_{m=1}^{\infty} \left(a_m \cos(\frac{m\pi x}{L}) + b_m \sin(\frac{m\pi x}{L}) \right) \tag{2}
$$

and calls (2) the *Fourier expansion* of f .

It turns out that the constants a_0 , a_m , b_m above are determined by the formulas

$$
a_0 = \frac{1}{L} \int_{-L}^{L} f(x) dx \tag{3}
$$

$$
a_m = \frac{1}{L} \int_{-L}^{L} f(x) \cos(\frac{m\pi x}{L}) dx, \text{ and}
$$
 (4)

$$
b_m = \frac{1}{L} \int_{-L}^{L} f(x) \sin(\frac{m\pi x}{L}) dx.
$$
 (5)

We will justify this a bit later, but for now, let us use these formulas to compute some Fourier series. The constants a_0, a_m, b_m are called the Fourier $coefficients \text{ of } f.$ ℓ ℓ \rightarrow 1. Let ℓ

Example 1. Let
$$
f(x)
$$
 be defined by
\n
$$
f(x) = \begin{cases}\n-x, & -2 \le x < 0 \\
x, & 0 \le x < 2\n\end{cases}
$$
\n
$$
f(x+4) = f(x) \text{ for all } x.
$$

Determine the Fourier coefficients of f .

Note that the graph of this function $f(x)$ looks like a "triangular wave." Here $L = 2$, and we compute

$$
a_0 = \frac{1}{2} \int_{-2}^{0} (-x) dx + \frac{1}{2} \int_{0}^{2} x dx
$$

= 1 + 1 = 2,

and, for $m > 0$,

$$
a_m = \frac{1}{2} \int_{-2}^{0} (-x) \cos(\frac{m\pi x}{2}) dx + \frac{1}{2} \int_{0}^{2} x \cos(\frac{m\pi x}{2}) dx
$$

\n
$$
b_m = \frac{1}{2} \int_{-2}^{0} (-x) \sin(\frac{m\pi x}{2}) dx + \frac{1}{2} \int_{0}^{2} x \sin(\frac{m\pi x}{2}) dx.
$$

To compute these integrals, we note that, integration by parts gives the formulas

$$
\int x \cos(ax)dx = \frac{x}{a}\sin(ax) - \int \frac{\sin(ax)}{a}dx
$$

$$
= \frac{x}{a}\sin(ax) + \frac{\cos(ax)}{a^2}
$$

$$
\int x \sin(ax)dx = -\frac{x}{a}\cos(ax) + \frac{\sin(ax)}{a^2}
$$

After some calculation, we get

$$
a_m = \begin{cases} -\frac{8}{(m\pi)^2}, & m \text{ odd} \\ 0, & m \text{ even} \end{cases}
$$

and $b_m = 0$ for all m. We will see later that this last fact follows from the fact that $f(-x) = f(x)$ for all x.

You will be asked to find various Fourier series in the homework.

3 Justification of the Fourier coefficient formulas

We need the following basic facts about the integrals of certain products of sines and cosines.

December 7, 2012 21-4

$$
\int_{-L}^{L} \cos\left(\frac{m\pi x}{L}\right) \cos\left(\frac{n\pi x}{L}\right) dx = \begin{cases} 0, & m \neq n, \\ L, & m = n \neq 0, \\ 2L, & m = n = 0 \end{cases}
$$
 (6)

$$
\int_{-L}^{L} \cos(\frac{m\pi x}{L})\sin(\frac{n\pi x}{L})dx = 0 \text{ for all } m, n;\tag{7}
$$

$$
\int_{-L}^{L} \sin(\frac{m\pi x}{L}) \sin(\frac{n\pi x}{L}) dx = \begin{cases} 0, & m \neq n, \\ L, & m = n \neq 0, \\ 0, & m = n = 0 \end{cases}
$$
 (8)

We justify formula (8), leaving the other similar calculations to the reader. First recall some formulas related to the sine and cosine functions.

The sum and difference formulas are:

$$
\cos(\alpha + \beta) = \cos(\alpha)(\cos(\beta) - \sin(\alpha)\sin(\beta)
$$
\n(9)

$$
\cos(\alpha - \beta) = \cos(\alpha)(\cos(\beta) + \sin(\alpha)\sin(\beta). \tag{10}
$$

Applying the first formula with $\alpha = \beta$ gives

$$
\cos(2\alpha) = \cos(\alpha)^2 - \sin(\alpha)^2
$$

This implies that

$$
1 + \cos(2\alpha) = \cos(\alpha)^2 + \sin(\alpha)^2 + \cos(\alpha)^2 - \sin(\alpha)^2
$$

= $2\cos(\alpha)^2$

or the so-called cosine half-angle formula

$$
\cos(\alpha)^2 = \frac{1}{2}(1 + \cos(2\alpha)).
$$

Similarly, the sine half-angle formula is

$$
\sin(\alpha)^2 = \frac{1}{2}(1 - \cos(2\alpha)).
$$

Formulas (9) and (10) imply that

$$
\cos(\alpha - \beta) - \cos(\alpha + \beta) = 2\sin(\alpha)\sin(\beta).
$$

Using $\alpha = nx$, $\beta = mx$ then gives

$$
\cos((n-m)x) - \cos((n+m)x) = 2\sin(nx)\sin(mx). \tag{11}
$$

This implies, for $m\neq n$ and both positive,

$$
\int_{-L}^{L} \sin\left(\frac{m\pi x}{L}\right) \sin\left(\frac{n\pi x}{L}\right) dx = \frac{1}{2} \int_{-L}^{L} \cos\left(\frac{(m-n)\pi x}{L}\right) dx
$$

$$
-\frac{1}{2} \int_{-L}^{L} \cos\left(\frac{(m+n)\pi x}{L}\right) dx
$$

$$
= \frac{L}{2\pi} \left[\frac{\sin\left(\frac{(m-n)\pi x}{L}\right)}{m-n} - \frac{\sin\left(\frac{(m+n)\pi x}{L}\right)}{m+n} \right]_{-L}^{L}
$$

$$
= 0.
$$

If $m = n = 0$, then

$$
\int_{-L}^{L} \sin(\frac{m\pi x}{L}) \sin(\frac{m\pi x}{L}) dx = \int_{-L}^{L} 0 dx = 0,
$$

while if $m = n \neq 0,$ we have

$$
\int_{-L}^{L} \sin(\frac{m\pi x}{L}) \sin(\frac{m\pi x}{L}) dx = \int_{-L}^{L} \left(\sin(\frac{m\pi x}{L})\right)^{2} dx
$$

$$
= \frac{1}{2} \int_{-L}^{L} \left[1 - \cos(\frac{2m\pi x}{L})\right] dx
$$

$$
= \frac{1}{2} \left[x - \frac{\sin(\frac{2m\pi x}{L})}{\frac{2m\pi}{L}}\right]_{-L}^{L}
$$

$$
= L.
$$

Now, suppose that

$$
f(x) = \frac{a_0}{2} + \sum_{m \ge 1} a_m \cos(\frac{m\pi x}{L}) + b_m \sin(\frac{m\pi x}{L}).
$$
 (12)

Since the integrals of cosine and sine functions over intervals of lengths equal to their periods vanish, we have

$$
\int_{-L}^{L} f(x)dx = \int_{-L}^{L} \left(\frac{a_0}{2} + \sum_{m \ge 1} a_m \cos(\frac{m\pi x}{L}) + b_m \sin(\frac{m\pi x}{L})\right) dx
$$

$$
= \frac{a_0}{2} (2L) + \sum_{m \ge 1} \int_{-L}^{L} a_m \cos(\frac{m\pi x}{L}) dx
$$

$$
+ \sum_{m \ge 1} \int_{-L}^{L} b_m \sin(\frac{m\pi x}{L}) dx
$$

$$
= a_0 L
$$

Analogously, using the orthogonality relations above, we have that, for $n \geq 1$,

$$
\int_{-L}^{L} f(x) \cos(\frac{n\pi x}{L}) dx = \int_{-L}^{L} \cos(\frac{n\pi x}{L})(\frac{a_0}{2} + \sum_{m \ge 1} a_m \cos(\frac{m\pi x}{L})) dx
$$

$$
+ \int_{-L}^{L} \cos(\frac{n\pi x}{L})(\sum_{m \ge 1} b_m \sin(\frac{m\pi x}{L})) dx
$$

$$
= a_n L
$$

which gives (4). Formula (5) is justified in a similar way.

4 Even and Odd functions

A function $f(x)$ is called *even* if $f(-x) = f(x)$ for all x. Analogously, a function $f(x)$ is called *odd* if $f(-x) = -f(x)$ for all x. For example, $cos(x)$ is even, and $sin(x)$ is odd.

Also, one sees easily that linear combinations of even (odd) functions are again even (odd).

The following facts are useful.

- 1. The product of two odd functions is even.
- 2. The product of two even functions is even.
- 3. The product of and even function and an odd function is odd.

It follows that, for $n \geq 0$, we have

- 4. $F(x)cos(\frac{n\pi x}{L})$ $\frac{\pi x}{L}$) is even,
- 5. $F(x)sin(\frac{n\pi x}{L})$ $\frac{\pi x}{L}$) is odd,
- 6. $G(x)cos(\frac{n\pi x}{L})$ $\frac{\pi x}{L}$) is odd, and
- 7. $G(x)sin(\frac{n\pi x}{L})$ $\frac{\pi x}{L}$) is even.

Let us compute the Fourier coefficients of the even function F and the odd function G.

Then, using the change of variables $u = -x$, we see that

$$
\int_{-L}^{0} F(x) dx = \int_{0}^{L} F(x) dx
$$

and

$$
\int_{-L}^{0} G(x) \, dx = -\int_{0}^{L} G(x) dx,
$$

Hence,

$$
\int_{-L}^{L} F(x) dx = \int_{-L}^{0} F(x) dx + \int_{0}^{L} F(x) dx = 2 \int_{0}^{L} F(x) dx, \qquad (13)
$$

and

$$
\int_{-L}^{L} G(x) dx = \int_{-L}^{0} G(x) dx + \int_{0}^{L} G(x) dx = -\int_{0}^{L} G(x) dx + \int_{0}^{L} G(x) dx = 0
$$
\n(14)

As a consequence, we get the following simplified formulas of the Fourier coefficients of even and odd functions.

Let F be an even function with Fourier coefficients a_n for $n \geq 0$ and b_n for $n \geq 1$.

Then, $b_n = 0$ for all $n \geq 1$, and

$$
a_n = \frac{2}{L} \int_0^L F(x) \cos\left(\frac{n\pi x}{L}\right) dx \text{ for all } n \ge 0
$$
 (15)

Similarly, if $G(x)$ is an odd function with Fourier coefficients a_n for $n \geq 0$ and b_n for $n \geq 1$, then $a_n = 0$ for all $n \geq 0$, and

$$
a_n = \frac{2}{L} \int_0^L G(x) \sin\left(\frac{n\pi x}{L}\right) dx \text{ for all } n \ge 0
$$
 (16)

In particular, the fourier series of an even function only has cosine terms and the fourier series of an odd function only has sine terms.

5 The Fourier Series of Even and Odd extensions

For each real number α we define the α -translation function T_{α} by $T_{\alpha}(x)$ = $x + \alpha$ for all x.

Let $L > 0$, and let $I = [-L, L]$. Notice that the collection of $2nL$ translates of I as n goes through the integers gives a disjoint collection of intervals, each of length $2L$, which cover the whole real line **R**.

That is, if **Z** is the set of integers $\{0, 1, -1, 2, -2, \ldots\}$, then

$$
\mathbf{R} = \bigcup_{n \in \mathbf{Z}} T_{2nL}(I)
$$

Another way to say this is that, for each $x \in \mathbf{R}$, there is a unique integer n_x and a unique point $y_x \in I$ such that $x = y_x + 2n_xL$.

Now, consider a real-valued function f defined on the interval $I = [-L, L)$. There is a unique function F of period 2L defined on all of $\bf R$ obtained by taking any $x \in \mathbf{R}$ and setting $F(x)$ to be $f(y_x)$. This function F is called the *periodic* 2L− extension of f. Sometimes, we leave out the L and call F simply the *periodic* extension of f.

If f is piecewise C^1 , then F is in $Per(L)$ and has a Fourier series.

Now, consider a piecewise C^1 function f defined on $[0, L)$.

The even extension F of f to $[-L, L]$ is the function defined by

$$
F(x) = \begin{cases} f(x) & \text{if } x \in [0, L) \\ f(-x) & \text{if } x \in [-L, 0) \end{cases}
$$

and the *odd extension* G of f to $[-L, L)$ is the function defined by

$$
G(x) = \begin{cases} f(x) & \text{if } x \in [0, L) \\ -f(-x) & \text{if } x \in [-L, 0) \end{cases}
$$

From formulas (15) and (16) we obtain the following formulas for the Fourier coefficients of the even and odd extensions of f .

Even case:

$$
F \sim \frac{a_0}{2} + \sum_{m=1}^{\infty} \left(a_m \cos\left(\frac{m\pi x}{L}\right) + b_m \sin\left(\frac{m\pi x}{L}\right) \right)
$$

$$
b_m = 0, \ a_m = \frac{2}{L} \int_0^L f(x) \cos\left(\frac{2\pi m x}{L}\right) dx
$$

Odd case:

$$
G \sim \frac{a_0}{2} + \sum_{m=1}^{\infty} \left(a_m \cos\left(\frac{m\pi x}{L}\right) + b_m \sin\left(\frac{m\pi x}{L}\right) \right)
$$

$$
a_m = 0, \ b_m = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{2\pi m x}{L}\right) dx
$$

Example 1.

Compute the Fourier Series of the even extension $F(x)$ of the function $f(x)$ such that

$$
f(x) = \begin{cases} 3 & \text{if } 0 \le x < 2 \\ 6 & \text{if } 2 \le x < 5 \end{cases}
$$

and $F(x+10) = F(x)$ for all x.

Solution

Since F is even, $b_n = 0$ for all $n \ge 1$, and, for $n \ge 0$,

$$
a_n = \frac{2}{5} \int_0^5 f(x) \cos(\frac{n\pi x}{5}) dx
$$

\n
$$
= \frac{2}{5} \left(\int_0^2 3 \cos(\frac{n\pi x}{5}) dx + \int_2^5 6 \cos(\frac{n\pi x}{5}) dx \right)
$$

\n
$$
= \frac{2}{5} \left(\frac{15}{n\pi} \left[\sin(n\pi x/5) \right]_{x=0}^{x=2} \right] + \frac{30}{n\pi} \left[\sin(n\pi x/5) \right]_{x=2}^{x=5} \right)
$$

\n
$$
= \frac{2}{5} \left(\frac{15}{n\pi} \left[\sin(n\pi 2/5) \right] + \frac{30}{n\pi} \left[\sin(n\pi) - \sin(n\pi 2/5) \right] \right)
$$

\n
$$
= \frac{2}{5} \left(\frac{15}{n\pi} \left[\sin(n\pi 2/5) \right] + \frac{30}{n\pi} \left[-\sin(n\pi 2/5) \right] \right)
$$

Remark. In submitting answers to the WebWork problems on Fourier series, you must remove expressions like $sin(n*\pi)$ or $cos(\pi*(2n-1)/2)$. When n is an integer these are equal to 0, but WebWork checks these functions at non-integral points and does not give the zero value to them. Hence, e.g., if the $sin(n * \pi)$ of the last example is left in, WebWork will mark the answer as incorrect.

Example 2.

Compute the Fourier Series of the odd extension $F(x)$ of the function $f(x)$ such that

$$
f(x) = \begin{cases} 3 & \text{if } 0 \le x < 4 \\ -2 & \text{if } 4 \le x < 6 \end{cases}
$$

and $F(x+12) = F(x)$ for all x.

Since this is similar to Example 1, we only set up the necessary integrals and leave their computation to the reader.

Since F is odd, $a_n = 0$ for all $n \ge 0$, and, for $n \ge 0$,

$$
b_n = \frac{2}{6} \int_0^6 f(x) \sin(\frac{n\pi x}{6}) dx
$$

= $\frac{2}{6} \left(\int_0^4 3\cos(\frac{n\pi x}{6}) dx + \int_4^6 (-2)\cos(\frac{n\pi x}{6}) dx \right)$

6 Orthogonal Functions

Let $v = (a_1, a_2, \ldots, a_n), w = (b_1, b_2, \ldots, b_n)$ be vectors in \mathbb{R}^n . The standard dot product of v and w is the number

$$
v \cdot w = \sum_{i=1}^{n} a_i b_i
$$

Let us also denote this by $\langle v, w \rangle$ and call it the standard *inner product* of v and w .

This has the properties that

- 1. $\langle v, v \rangle \ge 0$ for all vectors v and $\langle v, v \rangle = 0$ if and only if $v = 0$
- 2. $\langle v, w \rangle = \langle w, v \rangle$ for all vectors v, w
- 3. $\langle av + bw, u \rangle = a \langle v, u \rangle + b \langle w, u \rangle$ for all vectors u, v, w and scalars a, b.

The *norm* or *length* of $v =$ √ $\overline{}$.

Definition. Let $1 \leq k \leq n$ be a collection $\{v_1, v_2, \ldots, v_k\}$ of vectors in \mathbb{R}^n . The collection is called an *orthogonal* set of vectors in \mathbb{R}^n if $\langle v_i, v_j \rangle = 0$ for all $i \neq j$.

The collection $V = \{v_1, v_2, \ldots, v_k\}$ is called an *orthonomal* set of vectors if it is an orthogonal set and each vector has length 1.

If w can be expressed as a linear combination

$$
w = a_1v_1 + a_2v_2 + \ldots + a_kv_k
$$

and $\{v_1, v_2, \ldots, v_k\}$ is an orthogonal set, then we can determine the coefficients a_i of w as follows. Using orthogonality, we have

$$
\langle w, v_i \rangle = \langle a_1 v_1 + a_2 v_2 + \dots + a_k v_k, v_i \rangle
$$

= $\langle a_1 v_1, v_i \rangle + \langle a_2 v_2, v_i \rangle + \dots + \langle a_k v_k, v_1 \rangle$
= $a_i \langle v_i, v_i \rangle$

Thus,

$$
a_i = \langle w, v_i \rangle / \langle v_i, v_i \rangle. \tag{17}
$$

In the case that our orthogonal set V contains n vectors, then any vector w can be uniquely expressed as $w = \sum_{i=1}^{n} a_i v_i$ and the coefficients a_i can be determined from (17).

Definition. An orthogonal set V of vectors in \mathbb{R}^n is called *complete* if every vector w in \mathbb{R}^n can be written uniquely as a linear combination of elements in V .

The previous comments state that *any* orthogonal set of *n* vectors in \mathbb{R}^n is complete.

We wish to apply these concepts to function spaces.

Let $L > 0$ and let $\mathcal{F} \stackrel{\text{def}}{=} \mathcal{F}([-L, L])$ denote the set of piecewise continuous functions on $[-L, L]$.

We define an inner product on $\mathcal F$ by

$$
\langle f, g \rangle = \frac{1}{L} \int_{-L}^{L} f(x)g(x)dx
$$

This has some of the usual properties of the dot product on \mathbb{R}^n .

- 1. $\langle f, f \rangle > 0$ for $f \in \mathcal{F}$
- 2. $\langle af + bg, h \rangle = a \langle f, g \rangle + b \langle g, h \rangle$ for $f, g, h \in \mathcal{F}$ and a, b constants

Note: Since f is only piecewise continuous, it does not follow that

$$
\langle f, f \rangle = 0
$$

implies that f is the zero function. It is only zero off a finite set of points. If f were continuous and $\langle f, f \rangle = 0$, then it would imply that $f(x) = 0$ for all $x \in [-L, L]$, but in applications, the condition that we only deal with continuous functions is too restrictive.

Now consider the functions $\cos(n\pi x/L), \sin(n\pi x/L)$ for $n = 0, 1, 2, \ldots$. Note that if $n = 0$, then $\cos(n\pi x/L) = 1$ for all x, and $\sin(n\pi x/L) = 0$ for all x .

The justification of Fourier series in section 3 shows that the set of functions

$$
\{\cos(n\pi x/L), n = 1, 2, \ldots\} \cup \{\sin(n\pi x/L), n = 1, 2, 3, \ldots\}
$$

forms an orthonormal set of functions in $\mathcal F$ with respect the the inner product $\langle \cdot, \cdot \rangle$ on $\mathcal F$ we have just defined.

If we add the constant function 1, then we can express every function $f \in \mathcal{F}$ (up to finitely many exceptional points) as (an infinite sum)

$$
f(x) = c_0 \cos(0\pi x/L) + \sum_{n=1}^{\infty} (a_n \cos(n\pi x/L) + b_n \sin(n\pi x/L))
$$
 (18)

Here the coefficients are the costants $c_0, a_1, a_2, \ldots, b_1, b_2, \ldots$ We have denoted the constant term by c_0 instead of $a_0/2$ for a reason which we now explain.

The expression (18) is just the Fourier series of f.

Let us determine the coefficients in the way we did for orthogonal sets in \mathbf{R}^n .

Since, for any $n > 0$ we have

$$
\langle \cos(0\pi x/L), \cos(n\pi x/L) \rangle = \langle \cos(0\pi x/L), \sin(n\pi x/L) \rangle = 0,
$$

we get

$$
\langle f(x), \cos(0\pi x/L) \rangle = \frac{1}{L} \int_{-L}^{L} f(x) \cos(0\pi x/L) dx
$$

$$
= \frac{1}{L} \int_{-L}^{L} f(x) dx
$$

$$
= \frac{1}{L} \int_{-L}^{L} c_0 dx
$$

$$
= 2c_0
$$

Since

$$
a_0 = \frac{1}{L} \int_{-L}^{L} f(x) dx,
$$

we have that $c_0 = \frac{a_0}{2}$ $\frac{i_0}{2}$.

Thus, we write the constant term in the Fourier series as $\frac{a_0}{2}$ so that the formulas in terms of integrals for the Fourier coefficients then always have the factor $\frac{1}{L}$ times an integral from $-L$ to L.

Similarly,

$$
a_n = \langle f(x), \cos(n\pi x/L) \rangle
$$

=
$$
\frac{1}{L} \int_{-L}^{L} f(x) \cos(n\pi x/L) dx
$$

and

$$
b_n = \langle f(x), \sin(n\pi x/L) \rangle
$$

=
$$
\frac{1}{L} \int_{-L}^{L} f(x) \sin(n\pi x/L) dx
$$

Thus, if we list the functions $\cos(n\pi/x)$, $n = 0, 1, 2, \ldots$ and $\sin(n\pi x/L)$, $n =$ $1, 2, \ldots$ in one single list as $\{f_0, f_1, f_2, \ldots\}$, where f_0 is the function which is equal to 1 everywhere, then the Fourier series for f can be expressed as

$$
f(x) \sim c_0 f_0 + c_1 f_2 + \ldots +
$$
 (19)

where

$$
c_n=
$$

for all $n > 0$.

The reason we did not use an equality in (19) is that $f(x)$ is only equal to the right hand side off a (possibly empty) finite set of points in each closed interval. As we said before, we do not have equality unless f is continuous.

Remark Note that the set $\{1, \cos(n\pi x/L), \sin(n\pi x/L), n = 1, 2, 3, \ldots\}$ is almost orthonormal. It fails to be an orthonormal set only because the constant function 1 is not a unit vector. Its length is 2. This is not very important for our purposes.