Name:		
NetID:		

Instructions:

- 1. You will have 50 minutes to complete the exam.
- 2. The exam is a total of 3 questions, their respective points values are listed below.
- 3. Unless stated otherwise, you must justify your answers with proofs.
- 4. You may cite any results from lecture or the homework.
- 5. No books, notes, calculators, or electronic devices are permitted.
- 6. If you require additional space, please use the reverse side of the pages.
- 7. The exam has a total of 4 pages, please verify that your copy has all 4 pages.

Question	Score	Points
1.		20
2.		10
3.		20
Total		50

- 1. Let (X, \mathcal{M}, μ) be a finite measure space and let $(f_n)_{n \in \mathbb{N}}$ be a sequence of \mathcal{M} -measurable functions. Suppose $(f_n)_{n \in \mathbb{N}}$ converges in measure to an \mathcal{M} -measurable function f, and suppose there exists R > 0so that $|f_n(x)| \leq R$ for μ -almost every $x \in X$ and every $n \in \mathbb{N}$.
 - (a) Show that $|f(x)| \leq R$ for μ -almost every $x \in X$.
 - (b) Show that $f_n, f \in L^1(X, \mu)$ for all $n \in \mathbb{N}$ and that $f_n \to f$ in L^1 .

2. Let (X, \mathcal{M}, μ) be a finite measure space and let $f: X \to [0, \infty)$ be an \mathcal{M} -measurable function. Consider the following subset of the product space $X \times [0, \infty)$:

$$E := \{ (x, f(x)) \colon x \in X \}.$$

Show that $\mu \times m(E) = 0$, where m is the Lebesgue measure on $[0, \infty)$.

[Hint: use a fine partition of the range to obtain a countable cover of E by measurable rectangles.]

- 3. Let (X, \mathcal{M}, μ) be a finite measure space, and suppose $(\nu_n)_{n \in \mathbb{N}}$ is a sequence of positive measures satisfying $\nu_n(E) \leq \nu_{n+1}(E) \leq \mu(E)$ for all $E \in \mathcal{M}$.
 - (a) For each $n \in \mathbb{N}$ show that $\nu_n \ll \mu$ and $0 \leq \frac{d\nu_n}{d\mu} \leq \frac{d\nu_{n+1}}{d\mu} \leq 1$ μ -almost everywhere.
 - (b) If $f := \sup_n \frac{d\nu_n}{d\mu}$ and $d\nu := f d\mu$, show that ν is finite and $\nu_n \to \nu$ in total variation norm.