
Math 828 Homework 9 Solutions 11/22/2023

Exercises: (Sections 3.3, 3.4)

1. Let ν be a complex measure on (X,M). Show that ν = |ν| iff ν(X) = |ν|(X).

2. Let ν be a complex measure on (X,M). For E ∈ M, show

|ν|(E) = sup


n∑

j=1

|ν(Ej)| : E = E1 ∪ · · · ∪ En is a partition


= sup


∞∑
j=1

|ν(Ej)| : E =

∞⋃
j=1

Ej is a partition


= sup

{∣∣∣∣∫
E

f dν

∣∣∣∣ : |f | ≤ 1

}
.

3. Let f ∈ L1(Rn,m) be such that m({x ∈ Rn : f(x) ̸= 0}) > 0.

(a) Show that there exists C,R > 0 so that Hf(x) ≥ C|x|−n for |x| > R.

(b) Show that there exists C ′ > 0 so that m({x ∈ Rn : Hf(x) > ϵ}) ≥ C′

ϵ for all sufficiently small
ϵ > 0. [Note: this shows that the Hardy–Littlewood maximal inequality is sharp up to the choice
of constant.]

4. Let ν be a regular signed or complex Borel measure on Rn with Lebesgue decomposition ν = λ+ρ with
respect to the Lebesgue measure m, where λ ⊥ m and ρ ≪ m. Show that λ and ρ are both regular.

[Hint: first show |ν| = |λ|+ |ρ|.]

5. 1 Let M(X,M) denote the set of complex measures on a measurable space (X,M).

(a) Show that ∥ν∥ := |ν|(X) defines a norm on M(X,M).

(b) Show that M(X,M) is complete with respect to the metric ∥ν − µ∥.
(c) Suppose µ is a σ-finite measure on (X,M) and (νn)n∈N ⊂ M(X,M) satisfies νn ≪ µ for all

n ∈ N. For ν ∈ M(X,M), show that ∥νn − ν∥ → 0 if and only if ν ≪ µ and dνn

dµ → dν
dµ in L1(µ).

6. 2 For a Borel set E ⊂ Rn, the density of E at a point x is defined as

DE(x) := lim
r→0

m(E ∩B(x, r))

m(B(x, r))

whenever the limit exists.

(a) Show that DE is defined m-almost everywhere and DE = 1E m-almost everywhere.

(b) For 0 < α < 1, find an example of an E and so that DE(0) = α. [Hint: use a sequence of annuli.]

(c) Find an example of an E so that DE(0) does not exist. [Hint: use another sequence of annuli.]

———————————————————————————————————————————–

Solutions:

1. The “only if” direction is immediate. Conversely, suppose ν(X) = |ν|(X). We first show νi ≡ 0. Let
X = P ∪ N is a Hahn decomposition of for νi. Since ν(X) = |ν|(X) is real, we have by Proposition
3.16

|ν|(X) = ν(X) = νr(X) = νr(P ) + νr(N)

≤ |νr(P )|+ |νr(N)| ≤ |ν(P )|+ |ν(N)| ≤ |ν|(P ) + |ν|(N) = |ν|(X).

1Not collected
2Not collected
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Thus all of the above inequalities are actually equality. In particular,

|νr(P )|+ |νr(N)| = |ν(P )|+ |ν(N)| = (νr(P )2 + νi(P )2)1/2 + (νr(N)2 + νi(N)2)1/2

and so we must have νi(P ) = νi(N) = 0. But then νi ≡ 0 as claimed. Thus ν = νr is a signed measure,
and it remains to show ν− ≡ 0. Let X = P ′ ∪N ′ be a Hahn decomposition for ν. Then

|ν|(X) = ν(X) = ν(P ′) + ν(N ′) ≤ ν(P ′) ≤ |ν(P ′)| ≤ |ν|(P ′) ≤ |ν|(X),

and so the above inequalities are equalities. In particular, ν(N ′) = 0 and so ν− ≡ 0. □

2. Fix E ∈ M and denote the three supremums by α1, α2, α3, respectively. By letting En+1 = En+2 =
· · · = ∅, we see that α1 ≤ α2. Next, given a partition E =

⋃∞
j=1 Ej consider

f :=

∞∑
j=1

sgn(ν(Ej))1Ej
,

which satisfies |f | ≤ 1 and by the dominated convergence theorem∫
E

fdν =

∞∑
j=1

sgn(ν(Ej))ν(Ej) =

∞∑
j=1

|ν(Ej)|.

Hence α2 ≤ α3. By Proposition 3.16, if |f | ≤ 1 then∣∣∣∣∫
E

f dν

∣∣∣∣ ≤ ∫
E

|f | d|ν| ≤
∫
E

1 d|ν| = |ν|(E),

and so α3 ≤ |ν|(E).

Finally, let f := dν
d|ν| . Then Proposition 3.16 implies f dν

d|ν| = 1 |ν|-almost everywhere. Thus

|ν|(E) =

∫
E

1 d|ν| =
∫
E

f
dν

d|ν|
d|ν| =

∫
E

f dν.

Given ϵ > 0, Proposition 2.10 and the dominated convergence theorem yield a simple function ϕ on E
so that |ϕ| ≤ |f | = 1 and |

∫
E
(ϕ− f) dν| < ϵ. If ϕ =

∑n
j=1 αj1Ej is the standard representation, then

|αj | ≤ 1 and we have

|ν|(E) =

∫
E

f dν ≤
∣∣∣∣∫

E

ϕ dν

∣∣∣∣+ ϵ =

∣∣∣∣∣∣
n∑

j=1

αjν(Ej)

∣∣∣∣∣∣+ ϵ ≤
n∑

j=1

|ν(Ej)|+ ϵ.

Since E = E1 ∪ · · · ∪En is a finite partition, we can bound the above by α1 + ϵ. Letting ϵ → 0, we see
that |ν|(E) ≤ α1, and so all quantities are equal. □

3. (a) We have

α :=

∫
Rn

f dm > 0

since otherwise f = 0 m-almost everywhere by Proposition 2.16. Now, the dominated convergence
theorem, ∫

B(0,n)

|f | dm =

∫
Rn

1B(0,n)|f | dm →
∫
Rn

|f | dm = α.

Thus we can find R := n ∈ N large enough so that
∫
B(0,R)

|f | dm ≥ α
2 > 0. If |x| > R, then for

r := |x|+R we have B(0, R) ⊂ B(x, r) and hence∫
B(x,r)

|f | dm ≥
∫
B(0,R)

|f | dm ≥ α

2
.
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Also note that since r = |x|+R < 2|x| we have

m(B(x, r)) = crn ≤ c2n|x|n

where c is the measure of the unit ball centered at zero. Thus

Hf(x) ≥ 1

m(B(x, r))

∫
B(x,r)

|f | dm ≥ 1

c2n|x|n
α

2
,

and so we set C := α
c2n+1 . □

(b) Let C,R > 0 be as in part (a) and let 0 < ϵ < C
Rn . Then R < (C/ϵ)1/n and for R < |x| < (C/ϵ)1/n,

part (a) implies

Hf(x) ≥ C

|x|n
> ϵ.

Hence

m({x ∈ Rn : Hf(x) > ϵ}) ≥ m({x ∈ Rn : R < |x| < (C/ϵ)1/n}) = c(
C

ϵ
−Rn) = c

C − ϵRn

ϵ
,

where c is the measure of the unit ball centered at zero. If we further demand ϵ < C
2Rn , then

C − ϵRn > C
2 . Thus the above is strictly bounded below by C′

ϵ for C ′ = cC
2 . □

4. We first claim |ν| = |λ|+ |ρ|. Denote µ := |λ|+ |ρ|. Now, ρ ≪ m ⊥ λ implies ρ ⊥ λ, and so we can find
a partition Rn = A∪B so that A is ρ-null and B is λ-null. It follows that dρ

dµ = 0 µ-almost everywhere

on A and dλ
dµ = 0 µ-almost everywhere on B. So we have

|λ|(E) + |ρ|(E) = |λ|(E ∩A) + |ρ|(E ∩B) =

∫
E∩A

∣∣∣∣dλdµ
∣∣∣∣ dµ+

∫
E∩B

∣∣∣∣ dρdµ
∣∣∣∣ dµ

=

∫
E∩A

∣∣∣∣dνdµ
∣∣∣∣ dµ+

∫
E∩B

∣∣∣∣dνdµ
∣∣∣∣ dµ =

∫
E

∣∣∣∣dνdµ
∣∣∣∣ dµ = |ν|(E),

where we have use |ν| ≤ µ and Proposition 3.15. This proves the claim.

Now, for compact K ⊂ Rn, the claim implies |λ|(K), |ρ|(K) ≤ |ν|(K) < ∞ by regularity of ν. Let
Rn = A ∪ B as above, and note that A and B are also |ρ|-null and |λ|-null, respectively. For a Borel
set E ⊂ Rn and ϵ > 0, the regularity of |ν| allows us to find U1 ⊃ E ∩A and U2 ⊃ E ∩B be open sets
satisfying

|ν|(U1) ≤ |ν|(E ∩A) + ϵ = |λ|(E) + ϵ

|ν|(U2) ≤ |ν|(E ∩B) + ϵ = |ρ|(E) + ϵ.

Thus from the claim we have |λ|(U1) ≤ |ν|(U1) ≤ |λ|(E) + ϵ and |ρ|(U2) ≤ |ν|(U2) ≤ |ρ|(E) + ϵ, and so
|λ| and |λ| are both regular. By definition, this means λ and ρ are regular. □

5. (a) By Proposition 3.17, we have ∥ν + µ∥ = |ν + µ|(X) ≤ |ν|(X) + |µ|(X) = ∥ν∥ + ∥µ∥. For α ∈ C,
the first equality in Exercise 5 shows ∥αν∥ = |αν|(X) = |α||ν|(X) = |α∥∥v∥. Finally, if ∥ν∥ = 0,
then |ν|(E) ≤ |ν|(X) = 0 for all E ∈ M. Since ν ≪ |ν| by Proposition 3.16, it follows that ν = 0.
Thus ∥ · ∥ is a norm. □

(b) Suppose (νn)n∈N ⊂ M(X,M) is Cauchy with respect to this metric. Observe that for any E ∈ M
we have

|νn(E)− νm(E)| ≤ |νn − νm|(E) ≤ |νn − νm|(X) = ∥νn − νm∥.
Hence (νn(E))n∈N ⊂ C is a Cauchy sequence, and we will denote its limit by ν(E). We claim
ν ∈ M(X,M) and ∥νn − ν∥ → 0. First observe that for all ϵ > 0 there exists N ∈ N so that for
any n ≥ N and any partition E = E1 ∪ · · · ∪ Ed one has

d∑
j=1

|ν(Ej)− νn(Ej)| < ϵ.
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Indeed, let N ∈ N is such that ∥νn−νm∥ < ϵ
2 for all n,m ≥ N . Then for n ≥ N and any partition

E = E1 ∪ · · · ∪ Ed, Exercise 5 implies

d∑
j=1

|ν(Ej)− νn(Ej)| ≤
d∑

j=1

|ν(Ej)− νm(Ej)|+ ∥νm − νn∥

for anym ∈ N. In particular, if we takem ≥ N is taken large enough so that |ν(Ej)−νm(Ej)| < ϵ
2d

for each j = 1, . . . , d, then we obtain the claimed inequality. It now suffices to show ν is a complex
measure since then this inequality implies ∥ν − νn∥ ≤ ϵ for all n ≥ N by Exercise 5, and hence
∥νn − ν∥ → 0.

Now, we have ν(∅) = limn νn(∅) = 0. If (Ek)k∈N ⊂ M is a disjoint collection, we first show the
series

∑
k ν(Ek) converges absolutely. For ϵ = 1, let N ∈ N be as in our first observation. Then

for any K ∈ N we have

K∑
k=1

|ν(Ek)| ≤
K∑

k=1

|ν(Ek)− νN (Ek)|+
K∑

k=1

|νN (Ek)|

≤ 1 +

K∑
k=1

|νN |(Ek) = 1 + |νN |

(
K⋃

k=1

Ek

)
≤ 1 + ∥νN∥.

Since the bound is independent of K, we see that the series converges absolutely. Now let ϵ > 0
be arbitrary and take N ∈ N as in our first observation. Choose K ∈ N be large enough so that∑

k>K |ν(Ek)|+ |νN (Ek)| < ϵ. Denoting E =
⋃∞

k=1 Ek, we have∣∣∣∣∣
∞∑
k=1

ν(Ek)− ν(E)

∣∣∣∣∣ ≤
∣∣∣∣∣
∞∑
k=1

ν(Ek)− νN (Ek)

∣∣∣∣∣+ |νN (E)− ν(E)|

≤
K∑

k=1

|ν(Ek)− νN (Ek)|+
∑
k>K

|ν(Ek)|+ |νN (Ek)|+ |νN (E)− ν(E)| < 3ϵ.

Thus we must have
∑∞

k=1 ν(Ek) = ν(E), and therfore ν is a complex measure. □

(c) Suppose ∥νn − ν∥ → 0. If µ(E) = 0 then ν(E) = limn νn(E) = 0. Hence ν ≪ µ. By Proposition
3.15, we have

∥νn − ν∥ = |νn − ν|(X) =

∫
X

∣∣∣∣d(νn − ν)

dµ

∣∣∣∣ dµ =

∫
X

∣∣∣∣dνndµ
− dν

dµ

∣∣∣∣ dµ.

Thus ∥νn − ν∥ → 0 iff dνn

dµ → dν
dµ in L1. □

6. (a) Fix a Borel set E ⊂ Rn and define a Borel measure ν by ν(F ) := m(E ∩ F ). Equivalently,
dν = 1Edm. Since m is regular, it follows that dν

dm = 1E ∈ L1
loc(Rn,m), and so ν is regular by

Lemma 3.25. Consequently Theorem 3.24 implies

DE(x) = lim
r→0

ν(B(x, r))

m(B(x, r))
=

dν

dm
(x) = 1E(x)

for m-almost every x ∈ Rn. □

(b) Fix 0 < α < 1 and let x = 0. For each k ∈ N, let Ek ⊂ B(0, 1
k ) \ B(0, 1

k+1 ) be a Borel subset
satisfying

m(Ek) = αm

(
B(0,

1

k
) \B(0,

1

k + 1
)

)
= αc

(
1

kn
− 1

(k + 1)n

)
,

where c = m(B(0, 1)). (E.g. let Ek = B(0, 1
k ) \ B(0, ((1 − α) 1

kn + α 1
(k+1)n )

1/n).) Define E :=⋃
k∈N Ek, and note that this union is disjoint. For r ≤ 1, let K ∈ N be the unique integer so that
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1
K+1 < r ≤ 1

K . It follows that

∞⋃
k=K+1

Ek ⊂ E ∩B(0, r) ⊂
∞⋃

k=K

Ek

So using the second inclusion and 1
K+1 < r we have

m(E ∩B(0, r))

m(B(0, r))
≤

∞∑
k=K

α( 1
kn − 1

(k+1)n )

rn
=

α

rn

∞∑
k=K

1

kn
− 1

(k + 1)n
=

α

rnKn
<

α(K + 1)n

Kn
,

while using the first inclusion and r ≤ 1
K we have

m(E ∩B(0, r))

m(B(0, r))
≥

∞∑
k=K+1

α( 1
kn − 1

(k+1)n )

rn
=

α

rn(K + 1)n
≥ αKn

(K + 1)n
.

Since K → ∞ as r → 0, we have

lim sup
r→0

m(E ∩B(0, r))

m(B(0, r))
≤ lim sup

K→∞

α(K + 1)n

Kn
= α

and

lim inf
r→0

m(E ∩B(0, r))

m(B(0, r))
≥ lim inf

K→∞

αKn

(K + 1)n
= α.

Hence DE(0) = α. □

(c) Fix β ∈ (0, 1), and define

E :=

∞⋃
k=0

B(0, β2k) \B(0, β2k+1).

Also denote

EK :=

∞⋃
k=K

B(0, β2k) \B(0, β2k+1).

For r = β2K , K ≥ 0, we have

m(E ∩B(0, r))

m(B(0, r))
=
∑
k=K

β2kn − β2kn+n

β2Kn
= (1− βn)

∞∑
k=0

β2kn =
1− βn

1− β2n
=

1

1 + βn
.

For r = β2K+1, K ≥ 0, we have

m(E ∩B(0, r))

m(B(0, r))
=

∑
k=K+1

β2kn − β2kn+n

β2Kn+n
= (1− βn)βn

∞∑
k=0

β2kn =
βn

1 + βn
.

Since β2K , β2K+1 → 0 as K → ∞, these calculations show

lim inf
r→0

m(E ∩B(0, r))

m(B(0, r))
≤ βn

1 + βn
<

1

1 + βn
≤ lim sup

r→0

m(E ∩B(0, r))

m(B(0, r))
,

and the strict inequality implies the limit does not exist. □
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