Exercises: (Sections 3.3, 3.4)

1. Let ν be a complex measure on (X, \mathcal{M}). Show that $\nu=|\nu|$ iff $\nu(X)=|\nu|(X)$.
2. Let ν be a complex measure on (X, \mathcal{M}). For $E \in \mathcal{M}$, show

$$
\begin{aligned}
|\nu|(E) & =\sup \left\{\sum_{j=1}^{n}\left|\nu\left(E_{j}\right)\right|: E=E_{1} \cup \cdots \cup E_{n} \text { is a partition }\right\} \\
& =\sup \left\{\sum_{j=1}^{\infty}\left|\nu\left(E_{j}\right)\right|: E=\bigcup_{j=1}^{\infty} E_{j} \text { is a partition }\right\} \\
& =\sup \left\{\left|\int_{E} f d \nu\right|:|f| \leq 1\right\} .
\end{aligned}
$$

3. Let $f \in L^{1}\left(\mathbb{R}^{n}, m\right)$ be such that $m\left(\left\{x \in \mathbb{R}^{n}: f(x) \neq 0\right\}\right)>0$.
(a) Show that there exists $C, R>0$ so that $H f(x) \geq C|x|^{-n}$ for $|x|>R$.
(b) Show that there exists $C^{\prime}>0$ so that $m\left(\left\{x \in \mathbb{R}^{n}: H f(x)>\epsilon\right\}\right) \geq \frac{C^{\prime}}{\epsilon}$ for all sufficiently small $\epsilon>0$. [Note: this shows that the Hardy-Littlewood maximal inequality is sharp up to the choice of constant.]
4. Let ν be a regular signed or complex Borel measure on \mathbb{R}^{n} with Lebesgue decomposition $\nu=\lambda+\rho$ with respect to the Lebesgue measure m, where $\lambda \perp m$ and $\rho \ll m$. Show that λ and ρ are both regular.
[Hint: first show $|\nu|=|\lambda|+|\rho|$.
5. ${ }^{1}$ Let $M(X, \mathcal{M})$ denote the set of complex measures on a measurable space (X, \mathcal{M}).
(a) Show that $\|\nu\|:=|\nu|(X)$ defines a norm on $M(X, \mathcal{M})$.
(b) Show that $M(X, \mathcal{M})$ is complete with respect to the metric $\|\nu-\mu\|$.
(c) Suppose μ is a σ-finite measure on (X, \mathcal{M}) and $\left(\nu_{n}\right)_{n \in \mathbb{N}} \subset M(X, \mathcal{M})$ satisfies $\nu_{n} \ll \mu$ for all $n \in \mathbb{N}$. For $\nu \in M(X, \mathcal{M})$, show that $\left\|\nu_{n}-\nu\right\| \rightarrow 0$ if and only if $\nu \ll \mu$ and $\frac{d \nu_{n}}{d \mu} \rightarrow \frac{d \nu}{d \mu}$ in $L^{1}(\mu)$.
6. ${ }^{2}$ For a Borel set $E \subset \mathbb{R}^{n}$, the density of E at a point x is defined as

$$
D_{E}(x):=\lim _{r \rightarrow 0} \frac{m(E \cap B(x, r))}{m(B(x, r))}
$$

whenever the limit exists.
(a) Show that D_{E} is defined m-almost everywhere and $D_{E}=1_{E} m$-almost everywhere.
(b) For $0<\alpha<1$, find an example of an E and so that $D_{E}(0)=\alpha$. [Hint: use a sequence of annuli.]
(c) Find an example of an E so that $D_{E}(0)$ does not exist. [Hint: use another sequence of annuli.]

Solutions:

1. The "only if" direction is immediate. Conversely, suppose $\nu(X)=|\nu|(X)$. We first show $\nu_{i} \equiv 0$. Let $X=P \cup N$ is a Hahn decomposition of for ν_{i}. Since $\nu(X)=|\nu|(X)$ is real, we have by Proposition 3.16

$$
\begin{aligned}
|\nu|(X) & =\nu(X)=\nu_{r}(X)=\nu_{r}(P)+\nu_{r}(N) \\
& \leq\left|\nu_{r}(P)\right|+\left|\nu_{r}(N)\right| \leq|\nu(P)|+|\nu(N)| \leq|\nu|(P)+|\nu|(N)=|\nu|(X) .
\end{aligned}
$$

[^0]Thus all of the above inequalities are actually equality. In particular,

$$
\left|\nu_{r}(P)\right|+\left|\nu_{r}(N)\right|=|\nu(P)|+|\nu(N)|=\left(\nu_{r}(P)^{2}+\nu_{i}(P)^{2}\right)^{1 / 2}+\left(\nu_{r}(N)^{2}+\nu_{i}(N)^{2}\right)^{1 / 2}
$$

and so we must have $\nu_{i}(P)=\nu_{i}(N)=0$. But then $\nu_{i} \equiv 0$ as claimed. Thus $\nu=\nu_{r}$ is a signed measure, and it remains to show $\nu^{-} \equiv 0$. Let $X=P^{\prime} \cup N^{\prime}$ be a Hahn decomposition for ν. Then

$$
|\nu|(X)=\nu(X)=\nu\left(P^{\prime}\right)+\nu\left(N^{\prime}\right) \leq \nu\left(P^{\prime}\right) \leq\left|\nu\left(P^{\prime}\right)\right| \leq|\nu|\left(P^{\prime}\right) \leq|\nu|(X)
$$

and so the above inequalities are equalities. In particular, $\nu\left(N^{\prime}\right)=0$ and so $\nu^{-} \equiv 0$.
2. Fix $E \in \mathcal{M}$ and denote the three supremums by $\alpha_{1}, \alpha_{2}, \alpha_{3}$, respectively. By letting $E_{n+1}=E_{n+2}=$ $\cdots=\emptyset$, we see that $\alpha_{1} \leq \alpha_{2}$. Next, given a partition $E=\bigcup_{j=1}^{\infty} E_{j}$ consider

$$
f:=\sum_{j=1}^{\infty} \overline{\operatorname{sgn}\left(\nu\left(E_{j}\right)\right)} 1_{E_{j}}
$$

which satisfies $|f| \leq 1$ and by the dominated convergence theorem

$$
\int_{E} f d \nu=\sum_{j=1}^{\infty} \overline{\operatorname{sgn}\left(\nu\left(E_{j}\right)\right)} \nu\left(E_{j}\right)=\sum_{j=1}^{\infty}\left|\nu\left(E_{j}\right)\right|
$$

Hence $\alpha_{2} \leq \alpha_{3}$. By Proposition 3.16, if $|f| \leq 1$ then

$$
\left|\int_{E} f d \nu\right| \leq \int_{E}|f| d|\nu| \leq \int_{E} 1 d|\nu|=|\nu|(E)
$$

and so $\alpha_{3} \leq|\nu|(E)$.
Finally, let $f:=\overline{\frac{d \nu}{d|\nu|}}$. Then Proposition 3.16 implies $f \frac{d \nu}{d|\nu|}=1|\nu|$-almost everywhere. Thus

$$
|\nu|(E)=\int_{E} 1 d|\nu|=\int_{E} f \frac{d \nu}{d|\nu|} d|\nu|=\int_{E} f d \nu
$$

Given $\epsilon>0$, Proposition 2.10 and the dominated convergence theorem yield a simple function ϕ on E so that $|\phi| \leq|f|=1$ and $\left|\int_{E}(\phi-f) d \nu\right|<\epsilon$. If $\phi=\sum_{j=1}^{n} \alpha_{j} 1_{E_{j}}$ is the standard representation, then $\left|\alpha_{j}\right| \leq 1$ and we have

$$
|\nu|(E)=\int_{E} f d \nu \leq\left|\int_{E} \phi d \nu\right|+\epsilon=\left|\sum_{j=1}^{n} \alpha_{j} \nu\left(E_{j}\right)\right|+\epsilon \leq \sum_{j=1}^{n}\left|\nu\left(E_{j}\right)\right|+\epsilon
$$

Since $E=E_{1} \cup \cdots \cup E_{n}$ is a finite partition, we can bound the above by $\alpha_{1}+\epsilon$. Letting $\epsilon \rightarrow 0$, we see that $|\nu|(E) \leq \alpha_{1}$, and so all quantities are equal.
3. (a) We have

$$
\alpha:=\int_{\mathbb{R}^{n}} f d m>0
$$

since otherwise $f=0 \mathrm{~m}$-almost everywhere by Proposition 2.16. Now, the dominated convergence theorem,

$$
\int_{B(0, n)}|f| d m=\int_{\mathbb{R}^{n}} 1_{B(0, n)}|f| d m \rightarrow \int_{\mathbb{R}^{n}}|f| d m=\alpha
$$

Thus we can find $R:=n \in \mathbb{N}$ large enough so that $\int_{B(0, R)}|f| d m \geq \frac{\alpha}{2}>0$. If $|x|>R$, then for $r:=|x|+R$ we have $B(0, R) \subset B(x, r)$ and hence

$$
\int_{B(x, r)}|f| d m \geq \int_{B(0, R)}|f| d m \geq \frac{\alpha}{2}
$$

Also note that since $r=|x|+R<2|x|$ we have

$$
m(B(x, r))=c r^{n} \leq c 2^{n}|x|^{n}
$$

where c is the measure of the unit ball centered at zero. Thus

$$
H f(x) \geq \frac{1}{m(B(x, r))} \int_{B(x, r)}|f| d m \geq \frac{1}{c 2^{n}|x|^{n}} \frac{\alpha}{2}
$$

and so we set $C:=\frac{\alpha}{c 2^{n+1}}$.
(b) Let $C, R>0$ be as in part (a) and let $0<\epsilon<\frac{C}{R^{n}}$. Then $R<(C / \epsilon)^{1 / n}$ and for $R<|x|<(C / \epsilon)^{1 / n}$, part (a) implies

$$
H f(x) \geq \frac{C}{|x|^{n}}>\epsilon
$$

Hence

$$
m\left(\left\{x \in \mathbb{R}^{n}: H f(x)>\epsilon\right\}\right) \geq m\left(\left\{x \in \mathbb{R}^{n}: R<|x|<(C / \epsilon)^{1 / n}\right\}\right)=c\left(\frac{C}{\epsilon}-R^{n}\right)=c \frac{C-\epsilon R^{n}}{\epsilon}
$$

where c is the measure of the unit ball centered at zero. If we further demand $\epsilon<\frac{C}{2 R^{n}}$, then $C-\epsilon R^{n}>\frac{C}{2}$. Thus the above is strictly bounded below by $\frac{C^{\prime}}{\epsilon}$ for $C^{\prime}=\frac{c C}{2}$.
4. We first claim $|\nu|=|\lambda|+|\rho|$. Denote $\mu:=|\lambda|+|\rho|$. Now, $\rho \ll m \perp \lambda$ implies $\rho \perp \lambda$, and so we can find a partition $\mathbb{R}^{n}=A \cup B$ so that A is ρ-null and B is λ-null. It follows that $\frac{d \rho}{d \mu}=0 \mu$-almost everywhere on A and $\frac{d \lambda}{d \mu}=0 \mu$-almost everywhere on B. So we have

$$
\begin{aligned}
|\lambda|(E)+|\rho|(E) & =|\lambda|(E \cap A)+|\rho|(E \cap B)=\int_{E \cap A}\left|\frac{d \lambda}{d \mu}\right| d \mu+\int_{E \cap B}\left|\frac{d \rho}{d \mu}\right| d \mu \\
& =\int_{E \cap A}\left|\frac{d \nu}{d \mu}\right| d \mu+\int_{E \cap B}\left|\frac{d \nu}{d \mu}\right| d \mu=\int_{E}\left|\frac{d \nu}{d \mu}\right| d \mu=|\nu|(E)
\end{aligned}
$$

where we have use $|\nu| \leq \mu$ and Proposition 3.15. This proves the claim.
Now, for compact $K \subset \mathbb{R}^{n}$, the claim implies $|\lambda|(K),|\rho|(K) \leq|\nu|(K)<\infty$ by regularity of ν. Let $\mathbb{R}^{n}=A \cup B$ as above, and note that A and B are also $|\rho|$-null and $|\lambda|$-null, respectively. For a Borel set $E \subset \mathbb{R}^{n}$ and $\epsilon>0$, the regularity of $|\nu|$ allows us to find $U_{1} \supset E \cap A$ and $U_{2} \supset E \cap B$ be open sets satisfying

$$
\begin{aligned}
& |\nu|\left(U_{1}\right) \leq|\nu|(E \cap A)+\epsilon=|\lambda|(E)+\epsilon \\
& |\nu|\left(U_{2}\right) \leq|\nu|(E \cap B)+\epsilon=|\rho|(E)+\epsilon .
\end{aligned}
$$

Thus from the claim we have $|\lambda|\left(U_{1}\right) \leq|\nu|\left(U_{1}\right) \leq|\lambda|(E)+\epsilon$ and $|\rho|\left(U_{2}\right) \leq|\nu|\left(U_{2}\right) \leq|\rho|(E)+\epsilon$, and so $|\lambda|$ and $|\lambda|$ are both regular. By definition, this means λ and ρ are regular.
5. (a) By Proposition 3.17, we have $\|\nu+\mu\|=|\nu+\mu|(X) \leq|\nu|(X)+|\mu|(X)=\|\nu\|+\|\mu\|$. For $\alpha \in \mathbb{C}$, the first equality in Exercise 5 shows $\|\alpha \nu\|=|\alpha \nu|(X)=|\alpha\|\nu|(X)=| \alpha\|\|\mathbf{v}\|$. Finally, if $\|\nu\|=0$, then $|\nu|(E) \leq|\nu|(X)=0$ for all $E \in \mathcal{M}$. Since $\nu \ll|\nu|$ by Proposition 3.16, it follows that $\nu=0$. Thus $\|\cdot\|$ is a norm.
(b) Suppose $\left(\nu_{n}\right)_{n \in \mathbb{N}} \subset M(X, \mathcal{M})$ is Cauchy with respect to this metric. Observe that for any $E \in \mathcal{M}$ we have

$$
\left|\nu_{n}(E)-\nu_{m}(E)\right| \leq\left|\nu_{n}-\nu_{m}\right|(E) \leq\left|\nu_{n}-\nu_{m}\right|(X)=\left\|\nu_{n}-\nu_{m}\right\|
$$

Hence $\left(\nu_{n}(E)\right)_{n \in \mathbb{N}} \subset \mathbb{C}$ is a Cauchy sequence, and we will denote its limit by $\nu(E)$. We claim $\nu \in M(X, \mathcal{M})$ and $\left\|\nu_{n}-\nu\right\| \rightarrow 0$. First observe that for all $\epsilon>0$ there exists $N \in \mathbb{N}$ so that for any $n \geq N$ and any partition $E=E_{1} \cup \cdots \cup E_{d}$ one has

$$
\sum_{j=1}^{d}\left|\nu\left(E_{j}\right)-\nu_{n}\left(E_{j}\right)\right|<\epsilon
$$

Indeed, let $N \in \mathbb{N}$ is such that $\left\|\nu_{n}-\nu_{m}\right\|<\frac{\epsilon}{2}$ for all $n, m \geq N$. Then for $n \geq N$ and any partition $E=E_{1} \cup \cdots \cup E_{d}$, Exercise 5 implies

$$
\sum_{j=1}^{d}\left|\nu\left(E_{j}\right)-\nu_{n}\left(E_{j}\right)\right| \leq \sum_{j=1}^{d}\left|\nu\left(E_{j}\right)-\nu_{m}\left(E_{j}\right)\right|+\left\|\nu_{m}-\nu_{n}\right\|
$$

for any $m \in \mathbb{N}$. In particular, if we take $m \geq N$ is taken large enough so that $\left|\nu\left(E_{j}\right)-\nu_{m}\left(E_{j}\right)\right|<\frac{\epsilon}{2 d}$ for each $j=1, \ldots, d$, then we obtain the claimed inequality. It now suffices to show ν is a complex measure since then this inequality implies $\left\|\nu-\nu_{n}\right\| \leq \epsilon$ for all $n \geq N$ by Exercise 5 , and hence $\left\|\nu_{n}-\nu\right\| \rightarrow 0$.
Now, we have $\nu(\emptyset)=\lim _{n} \nu_{n}(\emptyset)=0$. If $\left(E_{k}\right)_{k \in \mathbb{N}} \subset \mathcal{M}$ is a disjoint collection, we first show the series $\sum_{k} \nu\left(E_{k}\right)$ converges absolutely. For $\epsilon=1$, let $N \in \mathbb{N}$ be as in our first observation. Then for any $K \in \mathbb{N}$ we have

$$
\begin{aligned}
\sum_{k=1}^{K}\left|\nu\left(E_{k}\right)\right| & \leq \sum_{k=1}^{K}\left|\nu\left(E_{k}\right)-\nu_{N}\left(E_{k}\right)\right|+\sum_{k=1}^{K}\left|\nu_{N}\left(E_{k}\right)\right| \\
& \leq 1+\sum_{k=1}^{K}\left|\nu_{N}\right|\left(E_{k}\right)=1+\left|\nu_{N}\right|\left(\bigcup_{k=1}^{K} E_{k}\right) \leq 1+\left\|\nu_{N}\right\|
\end{aligned}
$$

Since the bound is independent of K, we see that the series converges absolutely. Now let $\epsilon>0$ be arbitrary and take $N \in \mathbb{N}$ as in our first observation. Choose $K \in \mathbb{N}$ be large enough so that $\sum_{k>K}\left|\nu\left(E_{k}\right)\right|+\left|\nu_{N}\left(E_{k}\right)\right|<\epsilon$. Denoting $E=\bigcup_{k=1}^{\infty} E_{k}$, we have

$$
\begin{aligned}
\left|\sum_{k=1}^{\infty} \nu\left(E_{k}\right)-\nu(E)\right| & \leq\left|\sum_{k=1}^{\infty} \nu\left(E_{k}\right)-\nu_{N}\left(E_{k}\right)\right|+\left|\nu_{N}(E)-\nu(E)\right| \\
& \leq \sum_{k=1}^{K}\left|\nu\left(E_{k}\right)-\nu_{N}\left(E_{k}\right)\right|+\sum_{k>K}\left|\nu\left(E_{k}\right)\right|+\left|\nu_{N}\left(E_{k}\right)\right|+\left|\nu_{N}(E)-\nu(E)\right|<3 \epsilon
\end{aligned}
$$

Thus we must have $\sum_{k=1}^{\infty} \nu\left(E_{k}\right)=\nu(E)$, and therfore ν is a complex measure.
(c) Suppose $\left\|\nu_{n}-\nu\right\| \rightarrow 0$. If $\mu(E)=0$ then $\nu(E)=\lim _{n} \nu_{n}(E)=0$. Hence $\nu \ll \mu$. By Proposition 3.15 , we have

$$
\left\|\nu_{n}-\nu\right\|=\left|\nu_{n}-\nu\right|(X)=\int_{X}\left|\frac{d\left(\nu_{n}-\nu\right)}{d \mu}\right| d \mu=\int_{X}\left|\frac{d \nu_{n}}{d \mu}-\frac{d \nu}{d \mu}\right| d \mu
$$

Thus $\left\|\nu_{n}-\nu\right\| \rightarrow 0$ iff $\frac{d \nu_{n}}{d \mu} \rightarrow \frac{d \nu}{d \mu}$ in L^{1}.
6. (a) Fix a Borel set $E \subset \mathbb{R}^{n}$ and define a Borel measure ν by $\nu(F):=m(E \cap F)$. Equivalently, $d \nu=1_{E} d m$. Since m is regular, it follows that $\frac{d \nu}{d m}=1_{E} \in L_{l o c}^{1}\left(\mathbb{R}^{n}, m\right)$, and so ν is regular by Lemma 3.25. Consequently Theorem 3.24 implies

$$
D_{E}(x)=\lim _{r \rightarrow 0} \frac{\nu(B(x, r))}{m(B(x, r))}=\frac{d \nu}{d m}(x)=1_{E}(x)
$$

for m-almost every $x \in \mathbb{R}^{n}$.
(b) Fix $0<\alpha<1$ and let $x=0$. For each $k \in \mathbb{N}$, let $E_{k} \subset B\left(0, \frac{1}{k}\right) \backslash B\left(0, \frac{1}{k+1}\right)$ be a Borel subset satisfying

$$
m\left(E_{k}\right)=\alpha m\left(B\left(0, \frac{1}{k}\right) \backslash B\left(0, \frac{1}{k+1}\right)\right)=\alpha c\left(\frac{1}{k^{n}}-\frac{1}{(k+1)^{n}}\right)
$$

where $c=m(B(0,1))$. (E.g. let $E_{k}=B\left(0, \frac{1}{k}\right) \backslash B\left(0,\left((1-\alpha) \frac{1}{k^{n}}+\alpha \frac{1}{(k+1)^{n}}\right)^{1 / n}\right)$.) Define $E:=$ $\bigcup_{k \in \mathbb{N}} E_{k}$, and note that this union is disjoint. For $r \leq 1$, let $K \in \mathbb{N}$ be the unique integer so that
$\frac{1}{K+1}<r \leq \frac{1}{K}$. It follows that

$$
\bigcup_{k=K+1}^{\infty} E_{k} \subset E \cap B(0, r) \subset \bigcup_{k=K}^{\infty} E_{k}
$$

So using the second inclusion and $\frac{1}{K+1}<r$ we have

$$
\frac{m(E \cap B(0, r))}{m(B(0, r))} \leq \sum_{k=K}^{\infty} \frac{\alpha\left(\frac{1}{k^{n}}-\frac{1}{(k+1)^{n}}\right)}{r^{n}}=\frac{\alpha}{r^{n}} \sum_{k=K}^{\infty} \frac{1}{k^{n}}-\frac{1}{(k+1)^{n}}=\frac{\alpha}{r^{n} K^{n}}<\frac{\alpha(K+1)^{n}}{K^{n}},
$$

while using the first inclusion and $r \leq \frac{1}{K}$ we have

$$
\frac{m(E \cap B(0, r))}{m(B(0, r))} \geq \sum_{k=K+1}^{\infty} \frac{\alpha\left(\frac{1}{k^{n}}-\frac{1}{(k+1)^{n}}\right)}{r^{n}}=\frac{\alpha}{r^{n}(K+1)^{n}} \geq \frac{\alpha K^{n}}{(K+1)^{n}} .
$$

Since $K \rightarrow \infty$ as $r \rightarrow 0$, we have

$$
\limsup _{r \rightarrow 0} \frac{m(E \cap B(0, r))}{m(B(0, r))} \leq \limsup _{K \rightarrow \infty} \frac{\alpha(K+1)^{n}}{K^{n}}=\alpha
$$

and

$$
\liminf _{r \rightarrow 0} \frac{m(E \cap B(0, r))}{m(B(0, r))} \geq \liminf _{K \rightarrow \infty} \frac{\alpha K^{n}}{(K+1)^{n}}=\alpha .
$$

Hence $D_{E}(0)=\alpha$.
(c) Fix $\beta \in(0,1)$, and define

$$
E:=\bigcup_{k=0}^{\infty} B\left(0, \beta^{2 k}\right) \backslash B\left(0, \beta^{2 k+1}\right) .
$$

Also denote

$$
E_{K}:=\bigcup_{k=K}^{\infty} B\left(0, \beta^{2 k}\right) \backslash B\left(0, \beta^{2 k+1}\right) .
$$

For $r=\beta^{2 K}, K \geq 0$, we have

$$
\frac{m(E \cap B(0, r))}{m(B(0, r))}=\sum_{k=K} \frac{\beta^{2 k n}-\beta^{2 k n+n}}{\beta^{2 K n}}=\left(1-\beta^{n}\right) \sum_{k=0}^{\infty} \beta^{2 k n}=\frac{1-\beta^{n}}{1-\beta^{2 n}}=\frac{1}{1+\beta^{n}} .
$$

For $r=\beta^{2 K+1}, K \geq 0$, we have

$$
\frac{m(E \cap B(0, r))}{m(B(0, r))}=\sum_{k=K+1} \frac{\beta^{2 k n}-\beta^{2 k n+n}}{\beta^{2 K n+n}}=\left(1-\beta^{n}\right) \beta^{n} \sum_{k=0}^{\infty} \beta^{2 k n}=\frac{\beta^{n}}{1+\beta^{n}} .
$$

Since $\beta^{2 K}, \beta^{2 K+1} \rightarrow 0$ as $K \rightarrow \infty$, these calculations show

$$
\liminf _{r \rightarrow 0} \frac{m(E \cap B(0, r))}{m(B(0, r))} \leq \frac{\beta^{n}}{1+\beta^{n}}<\frac{1}{1+\beta^{n}} \leq \limsup _{r \rightarrow 0} \frac{m(E \cap B(0, r))}{m(B(0, r))},
$$

and the strict inequality implies the limit does not exist.

[^0]: ${ }^{1}$ Not collected
 ${ }^{2}$ Not collected

