Exercises:

§21, 22

1. Let X be a set and let Y be a metric space with metric d. Define a metric on Y^{X} by

$$
\bar{\rho}\left(\left(y_{x}\right)_{x \in X},\left(z_{x}\right)_{x \in X}\right):=\sup _{x \in X} \bar{d}\left(y_{x}, z_{x}\right),
$$

where $\bar{d}(y, z)=\min \{d(y, z), 1\}$ is the standard bounded metric corresponding to d. Let $f_{n}, f: X \rightarrow Y$ be functions, $n \in \mathbb{N}$, and define $\mathbf{f}_{\mathbf{n}}, \mathbf{f} \in Y^{X}$ by $\mathbf{f}_{\mathbf{n}}:=\left(f_{n}(x)\right)_{x \in X}$ and $\mathbf{f}:=(f(x))_{x \in X}$.
(a) Show that $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges pointwise to f if and only if the sequence $\left(\mathbf{f}_{\mathbf{n}}\right)_{n \in \mathbb{N}}$ converges to \mathbf{f} when Y^{X} is given the product topology.
(b) Show that $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges uniformly to f if and only if the sequence $\left(\mathbf{f}_{\mathbf{n}}\right)_{n \in \mathbb{N}}$ converges to \mathbf{f} when Y^{X} is given the topology induced by the metric $\bar{\rho}$.
2. Let X be a topological space. For a subset $A \subset X$, a retraction of X onto A is a continuous map $r: X \rightarrow A$ satisfying $r(a)=a$ for all $a \in A$.
(a) Let $p: X \rightarrow Y$ be a continuous map between topological spaces. Show that if there exists a continuous function $f: Y \rightarrow X$ so that $p(f(y))=y$ for all $y \in Y$, then p is a quotient map.
(b) Show that a retraction is a quotient map.
3. Consider the following subset of \mathbb{R}^{2} :

$$
A:=\left\{(x, y) \in \mathbb{R}^{2} \mid \text { either } x \geq 0 \text { or } y=0(\text { or both) }\} .\right.
$$

Define $q: A \rightarrow \mathbb{R}$ by $q(x, y)=x$. Show that q is a quotient map, but is neither open nor closed.
4. Let X and Y be topological spaces and let $p: X \rightarrow Y$ be a surjective map.
(a) Show that a subset $A \subset X$ is saturated with respect to p if and only if $X \backslash A$ is saturated with respect to p.
(b) Show that $p(U) \subset Y$ is open for all saturated open sets $U \subset X$ if and only if $p(A) \subset Y$ is closed for all saturated closed sets $A \subset X$.
(c) Show that if p is an injective quotient map, then it is a homeomorphism.
5. Let $X:=(0,1] \cup[2,3), Y:=(0,2)$, and $Z:=(0,1] \cup(2,3)$ and define maps $p: X \rightarrow Y$ and $q: X \rightarrow Z$ by

$$
p(t):=\left\{\begin{array}{ll}
t & \text { if } 0<t \leq 1 \\
t-1 & \text { if } 2 \leq t<3
\end{array} \quad \text { and } \quad q(t):=\left\{\begin{array}{ll}
t & \text { if } t \neq 2 \\
1 & \text { otherwise }
\end{array} .\right.\right.
$$

Equip X and Y with their subspace topologies from \mathbb{R} and equip Z with the quotient topology induced by q.
(a) Show that p is a quotient map.
(b) Show that q is a quotient map.
(c) Show that $f: Y \rightarrow Z$ defined by

$$
f(t):= \begin{cases}t & \text { if } 0<t \leq 1 \\ t+1 & \text { if } 1<t<2\end{cases}
$$

is a homeomorphism. [Hint: show $f \circ p=q$.]
6*. Consider

$$
\begin{aligned}
X & :=\left\{\mathbf{x} \in \mathbb{R}^{2} \mid\|\mathbf{x}\| \leq 1\right\} \\
S^{2} & :=\left\{\mathbf{x} \in \mathbb{R}^{3} \mid\|\mathbf{x}\|=1\right\} .
\end{aligned}
$$

In this exercise you will show a quotient space of X is homeomorphic to S^{2}.
(a) Let $S^{1}:=\left\{\mathbf{x} \in \mathbb{R}^{2} \mid\|\mathbf{x}\|=1\right\}$. Show that $f: X \backslash S^{1} \rightarrow \mathbb{R}^{2}$ defined by

$$
f(\mathbf{x}):=\frac{1}{1-\|\mathbf{x}\|} \mathbf{x}
$$

is a homeomorphism.
(b) Show that $g: S^{2} \backslash\{(0,0,1)\} \rightarrow \mathbb{R}^{2}$ defined by

$$
g(\mathbf{x}):=\frac{1}{1-x_{3}}\left(x_{1}, x_{2}\right)
$$

is a homeomorphism.
(c) Show that $p: X \rightarrow S^{2}$ defined by

$$
p(\mathbf{x}):= \begin{cases}g^{-1} \circ f(\mathbf{x}) & \text { if } \mathbf{x} \in X \backslash S^{1} \\ (0,0,1) & \text { otherwise }\end{cases}
$$

is a quotient map.
(d) Define an equivalence relation on X by $\mathbf{x} \sim \mathbf{y}$ if and only if $p(\mathbf{x})=p(\mathbf{y})$. Describe the quotient space X / \sim and show that it is homeomorphic to S^{2}.

Solutions:

1. (a) The sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges pointwise to f if and only if $\left(f_{n}(x)\right)_{n \in \mathbb{N}}$ converges to $f(x)$ for all $x \in X$. Let $\pi_{x}: Y^{X} \rightarrow Y$ be the coordinate projection and note that $\pi_{x}\left(\mathbf{f}_{\mathbf{n}}\right)=f_{n}(x)$ and $\pi_{x}(\mathbf{f})=f(x)$. Thus $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges pointwise to f if and only if $\left(\pi_{x}\left(\mathbf{f}_{\mathbf{n}}\right)\right)_{n \in \mathbb{N}}$ converges to $\pi_{x}(\mathbf{f})$ for all $x \in X$. By Exercise 5.(a) on Homework 6, this is further equivalent to $\left(\mathbf{f}_{\mathbf{n}}\right)_{n \in \mathbb{N}}$ converges to \mathbf{f} in the product topology on Y^{X}.
(b) (\Longrightarrow) : Suppose $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges uniformly to f. Let $\epsilon>0$. Then there exists $n_{0} \in \mathbb{N}$ so that for all $n \geq n_{0}$ and all $x \in X$ we have

$$
d\left(f_{n}(x), f(x)\right)<\frac{\epsilon}{2}
$$

The above further implies $\bar{d}\left(f_{n}(x), f(x)\right)<\frac{\epsilon}{2}$. Consequently, for $n \geq n_{0}$ we have

$$
\bar{\rho}\left(\mathbf{f}_{\mathbf{n}}, \mathbf{f}\right)=\sup _{x \in X} \bar{d}\left(f_{n}(x), f(x)\right) \leq \frac{\epsilon}{2}<\epsilon .
$$

Thus $\left.\left(\mathbf{f}_{\mathbf{n}}\right)\right)_{n \in \mathbb{N}}$ converges to \mathbf{f} in the topology induced by $\bar{\rho}$.
(\Longleftarrow) : Suppose $\left.\left(\mathbf{f}_{\mathbf{n}}\right)\right)_{n \in \mathbb{N}}$ converges to \mathbf{f} in the topology induced by $\bar{\rho}$. Let $0<\epsilon<1$. Then there exists $n_{0} \in \mathbb{N}$ so that for $n \geq n_{0}$ we have $\bar{\rho}\left(\mathbf{f}_{\mathbf{n}}, \mathbf{f}\right)<\epsilon$. Consequently $\bar{d}\left(f_{n}(x), f(x)\right)<\epsilon$ for all $x \in X$. Since $\epsilon<1$, this implies $d\left(f_{n}(x), f(x)\right)<\epsilon$. That is, for all $n \geq n_{0}$ and all $x \in X$ we have $d\left(f_{n}(x), f(x)\right)<\epsilon$. Thus $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges uniformly to f.
2. (a) First note that p is surjective: given any $y \in Y$ we have $p(f(y))=y$ and so $p(X)=Y$. Now, let $V \subset Y$. If V is open, then the continuity of p implies $p^{-1}(V) \subset X$ is open. Conversely, assume $p^{-1}(V) \subset X$ is open. We claim that $f^{-1}\left(p^{-1}(V)\right)=V$. Indeed, for $y \in V$ we have $p \circ f(y)=y$ and thus $y \in(p \circ f)^{-1}(V)=f^{-1}\left(p^{-1}(V)\right)$. Conversely, if $y \in f^{-1}\left(p^{-1}(V)\right)$ then $y=p(f(y)) \in V$. Thus $V=f^{-1}\left(p^{-1}(V)\right)$ and so the continuity of f implies V is open since $p^{-1}(V)$ is open. We have shown V is open if and only if $p^{-1}(V)$ is open, and so p is a quotient map.
(b) Let $r: X \rightarrow A$ be a retraction. Recall that the inclusion map $i: A \rightarrow X$ defined by $i(a)=a$ is continuous. We also have $r(i(a))=r(a)=a$ for all $a \in A$. Thus r is a quotient map by the previous part.
3. First observe that $(x, 0) \in A$ for all $x \in \mathbb{R}$, and thus $q(x, 0)=x \in q(A)$ for all $x \in \mathbb{R}$. That is, q is surjective. Since q is the restriction of a coordinate projection, it is continuous. By a proposition from $\S 22$, to show q is a quotient map it suffices to show $q(U)$ is open for all saturated open sets $U \subset A$. Let $U \subset A$ be a saturated open set and let $x_{0} \in q(U)$. Then there exists $\left(x_{0}, y\right) \in U$. We claim that $\left(x_{0}, 0\right) \in U$. Indeed, if $x_{0}<0$, then we must have $y=0$ otherwise $\left(x_{0}, y\right) \notin A$. If $x_{0} \geq 0$, then since $q\left(x_{0}, 0\right)=x_{0}=q\left(x_{0}, y\right)$ we have

$$
\left(x_{0}, 0\right) \in q^{-1}(q(U))=U
$$

since U is saturated. Now, since U is open in A, there exists an open subset $V \subset \mathbb{R}^{2}$ with $U=V \cap A$. Since the square metric on \mathbb{R}^{2} induces its standard topology, it follows that there is $\epsilon>0$ so that

$$
\left(x_{0}-\epsilon, x_{0}+\epsilon\right) \times(-\epsilon, \epsilon) \subset V
$$

Thus $\left(x_{0}-\epsilon, x_{0}+\epsilon\right) \times\{0\} \subset V \cap A=U$. Consequently, $\left(x_{0}-\epsilon, x_{0}+\epsilon\right) \subset q(U)$. Since $x_{0} \in q(U)$ was arbitrary, it follows that $q(U)$ is open. Thus q is a quotient map.
Alternatively, one can also simply note that $f: \mathbb{R} \rightarrow A$ defined by $f(x)=(x, 0)$ is continuous (since its coordinate functions are continuous) and satisfies $q(f(x))=q(x, 0)=x$ for all $x \in \mathbb{R}$. Thus q is a quotient map by Exercise 2.(a).

To see that q is not an open map, consider $U:=[0,1) \times(1,2) \subset A$. This is open in A since $U=$ $((-1,1) \times(1,2)) \cap A$. However, $q(U)=[0,1)$ which is not open in \mathbb{R}.
To see that q is not a closed map, consider $B:=\left\{\left.\left(x, \frac{1}{x}\right) \in \mathbb{R}^{2} \right\rvert\, x>0\right\} \subset A$. To see that this set is closed in \mathbb{R}^{2} (and hence in A), suppose $\left(x_{i}, \frac{1}{x_{i}}\right)_{i \in I} \subset B$ is a net converging to some $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$. Since the coordinate projections are continuous, we see that the nets $\left(x_{i}\right)_{i \in I}$ and $\left.\left(\frac{1}{x_{i}}\right)\right)_{i \in I}$ converge to x_{0} and y_{0}, respectively. By a lemma from $\S 21$ we know that $f(t):=\frac{1}{t}$ is continuous for $t>0$. Consequently, $\left(\frac{1}{x_{i}}\right)_{i \in I}=\left(f\left(x_{i}\right)\right)_{i \in I}$ converges to $f\left(x_{0}\right)=\frac{1}{x_{0}}$. Since \mathbb{R}^{2} is Hausdorff and has unique limits, it must be that $y_{0}=\frac{1}{x_{0}}$ and so $\left(x_{0}, y_{0}\right) \in B$. Thus B is closed. However, $q(B)=(0, \infty)$ which is not closed in \mathbb{R}.
4. (a) The symmetry between A and $X \backslash A$ means it suffices to show the "only if" direction. Suppose A is saturated with respect to p. We first claim that $p(X \backslash A)=Y \backslash p(A)$. If $y \in p(X \backslash A)$, then $y=p(x)$ for some $x \in X \backslash A$. If $y \in p(A)$, then $x \in p^{-1}(p(A))=A$, a contradiction, and so we must have $y \in Y \backslash p(A)$. Conversely, if $y \in Y \backslash p(A)$ then by surjectivity there exists $x \in X$ with $p(x)=y$. If $x \in A$ then we would have $y \in p(A)$, a contradiction, and so it must be that $x \in X \backslash A$. Thus $y=p(x) \in P(X \backslash A)$, which proves the claim. Using the claim we see that

$$
p^{-1}(p(X \backslash A))=p^{-1}(Y \backslash p(A))=p^{-1}(Y) \backslash p^{-1}(p(A))=X \backslash A
$$

Thus $X \backslash A$ is saturated.
(b) ($\Longrightarrow)$: Suppose $p(U) \subset Y$ is open for all saturated open sets $U \subset X$. Let $A \subset X$ be a saturated closed set. Then $U:=X \backslash A$ is saturated by the previous part and is open. Thus $p(U)=p(X \backslash A)$ is open, but our claim from the previous part implies this equals $Y \backslash p(A)$. Thus $p(A)$ is closed. (\Longleftarrow) : This follows by changing all instances of "closed" to "open" and vice-versa in the previous argument.
(c) Let $p: X \rightarrow Y$ be an injective quotient map. Then p is a continuous bijection and so it remains to show its inverse, call it q, is continuous. Observe that since p is injective, $p^{-1}(p(A))=A$ for all $A \subset X$ by Exercise 1 on Homework 1. That is, all subsets are saturated. Let $U \subset X$ be open, then $q^{-1}(U)=p(U)$. Since U is a saturated open set and p is a quotient map, a proposition from $\S 22$ implies $p(U)$ is open. Thus q is continuous and therefore p is a homeomorphism.
5. (a) We first show p is surjective. Let $y \in Y$. If $y \in(0,1]$ then $p(y)=y$, and otherwise $p(y+1)=y$. The fact that p is continuous follows from the pasting lemma: $A:=(0,1]$ and $B:=[2,3)$ are closed in X, their union is all of $X,\left.p\right|_{A}(t)=t$ and $\left.p\right|_{B}(t)=t-1$ are continuous, and since $A \cap B=\emptyset$ there is no overlap to check. Let $U \subset X$ be a saturated open set, and let $y \in p(U)$.

If $y=1$, then $p(1)=1=p(2)$ implies $1,2 \in p^{-1}(p(U))=U$. Thus there exists $\epsilon>0$ so that $(1-\epsilon, 1] \cup[2,2+\epsilon) \subset U$. Thus

$$
(1-\epsilon, 1+\epsilon)=p((1-\epsilon, 1] \cup[2,2+\epsilon)) \subset p(U)
$$

If $y \neq 1$, then $y=p(x)$ for some $x \in(0,1) \cup(2,3)$, and $x \in p^{-1}(p(U))=U$. Thus there exists an $\epsilon>0$ so that $(x-\epsilon, x+\epsilon) \subset U$. It follows that $(y-\epsilon, y+\epsilon)=p((x-\epsilon, x+\epsilon)) \subset p(U)$. Thus in either case we have shown that there is a neighborhood of y that lies inside of $p(U)$. Since $y \in p(U)$ was arbitrary, this implies $p(U)$ is open. A proposition from $\S 22$ then implies p is a quotient map.
(b) This follows from the fact that Z has the quotient topology induced by $q: V \subset Z$ is open if and only if belongs to the topology which is the collection $\left\{U \subset Z \mid q^{-1}(U) \subset X\right.$ is open $\}$.
(c) We observe that for $t \in(0,1]$ we have $p(t)=t \in(0,1]$, and hence $f(p(t))=f(t)=t=q(t)$. For $t=2, f(p(2))=f(1)=1=q(2)$. For $t \in(2,3)$ we have $p(t)=t-1 \in(1,2)$, and hence $f(p(t))=(t-1)+1=t=q(t)$. Thus $f \circ p=q$. By a theorem from $\S 22, q=f \circ p$ being a quotient map implies f is a quotient map. We can also see that f is injective since its inverse is given by the function $g:=\left.p\right|_{Z}$. Thus f is an injective quotient map and therefore a homeomorphism by Exercise 4.(c).

6*. (a) Since $\|\mathbf{x}\|$ is the distance from \mathbf{x} to the origin in the euclidean metric, we know from Exercise 3 on Homework 8 that this function is continuous. Since subtraction is continuous, we further know $\mathbf{x} \mapsto 1-\|\mathbf{x}\|$ is continuous and in particular is non-zero on $X \backslash S^{1}$. Thus the coordinate functions of f are continuous as the quotients of continuous functions (the coordinate projections) by non-zero continuous functions. Consider the function

$$
h(\mathbf{x}):=\frac{1}{1+\|\mathbf{x}\|} \mathbf{x}
$$

Since $\|h(\mathbf{x})\|=\frac{\|\mathbf{x}\|}{1+\|\mathbf{x}\|}<1$, we see that $h: \mathbb{R}^{2} \rightarrow X \backslash S^{1}$. It is continuous since its coordinate functions are continuous (by the same argument used on f above). Moreover, for $\mathbf{x} \in \mathbb{R}^{2}$ we have

$$
f \circ h(\mathbf{x})=\frac{1}{1-\|h(\mathbf{x})\|} h(\mathbf{x})=\frac{1}{1-\frac{\|\mathbf{x}\|}{1+\|\mathbf{x}\|}} \frac{1}{1+\|\mathbf{x}\|} \mathbf{x}=\frac{1}{1+\|x\|-\|x\|} \mathbf{x}=\mathbf{x}
$$

and for $\mathrm{x} \in X \backslash S^{1}$ we have

$$
h \circ f(\mathbf{x})=\frac{1}{1+\|f(\mathbf{x})\|} f(\mathbf{x})=\frac{1}{1+\frac{\|\mathbf{x}\|}{1-\|\mathbf{x}\|}} \frac{1}{1-\|\mathbf{x}\|} \mathbf{x}=\frac{1}{1-\|x\|+\|x\|} \mathbf{x}=\mathbf{x}
$$

Thus $h=f^{-1}$ and so f is a bijection. Since both f and h are continuous, we see that f is a homeomorphism.
(b) Observe that $1-x_{3} \neq 0$ for $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \in S^{2} \backslash\{(0,0,1)\}$. Thus g is continuous since each of its coordinate functions are continuous. For $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$, consider

$$
k\left(x_{1}, x_{2}\right):=\left(\frac{2}{x_{1}^{2}+x_{2}^{2}+1} x_{1}, \frac{2}{x_{1}^{2}+x_{2}^{2}+1} x_{2}, \frac{x_{1}^{2}+x_{2}^{2}-1}{x_{1}^{2}+x_{2}^{2}+1}\right)
$$

Then k is continuous because its coordinate functions are and we also note that

$$
\begin{aligned}
\left\|k\left(x_{1}, x_{2}\right)\right\|^{2} & =\frac{4 x_{1}^{2}+4 x_{2}^{2}+\left(x_{1}^{2}+x_{2}^{2}-1\right)^{2}}{\left(x_{1}^{2}+x_{2}^{2}+1\right)^{2}}=\frac{4 x_{1}^{2}+4 x_{2}^{2}+\left(x_{1}^{2}+x_{2}^{2}\right)^{2}-2\left(x_{1}^{2}+x_{2}^{2}\right)+1}{\left(x_{1}^{2}+x_{2}^{2}+1\right)^{2}} \\
& =\frac{\left(x_{1}^{2}+x_{2}^{2}\right)^{2}+2\left(x_{1}^{2}+x_{2}^{2}\right)+1}{\left(x_{1}^{2}+x_{2}^{2}+1\right)^{2}}=\frac{\left(x_{1}^{2}+x_{2}^{2}+1\right)^{2}}{\left(x_{1}^{2}+x_{2}^{2}+1\right)^{2}}=1
\end{aligned}
$$

Thus k is valued in S^{2}, but since the third coordinate is strictly less than one, we see that $k: \mathbb{R}^{2} \rightarrow S^{2} \backslash\{(0,0,1)\}$. Finally, we observe that for $\mathbf{x} \in \mathbb{R}^{2}$

$$
\begin{aligned}
g \circ k(\mathbf{x}) & =\frac{1}{1-\frac{x_{1}^{2}+x_{2}^{2}-1}{x_{1}^{2}+x_{2}^{2+1}}}\left(\frac{2}{x_{1}^{2}+x_{2}^{2}+1} x_{1}, \frac{2}{x_{1}^{2}+x_{2}^{2}+1} x_{2}\right) \\
& =\frac{1}{x_{1}^{2}+x_{2}^{2}+1-\left(x_{1}^{2}+x_{2}^{2}-1\right)}\left(2 x_{1}, 2 x_{2}\right)=\mathbf{x}
\end{aligned}
$$

and for $\mathbf{x} \in S^{2} \backslash\{(0,0,1)\}$ we have, using $x_{1}^{2}+x_{2}^{2}=1-x_{3}^{2}$, that

$$
\begin{aligned}
k \circ g(\mathbf{x}) & =k\left(\frac{x_{1}}{1-x_{2}}, \frac{x_{2}}{1-x_{3}}\right) \\
& =\left(\frac{2}{\frac{x_{1}^{2}}{\left(1-x_{3}\right)^{2}}+\frac{x_{2}^{2}}{\left(1-x_{3}\right)^{2}}+1} \frac{x_{1}}{1-x_{3}}, \frac{x_{1}^{2}}{\frac{2}{\left(1-x_{3}\right)^{2}}+\frac{x_{2}^{2}}{\left(1-x_{3}\right)^{2}}+1} \frac{x_{2}}{1-x_{3}}, \frac{\frac{x_{1}^{2}}{\left(1-x_{3}\right)^{2}}+\frac{x_{2}^{2}}{\left(1-x_{3}\right)^{2}}-1}{\frac{x_{1}^{2}}{\left(1-x_{3}\right)^{2}}+\frac{x_{2}^{2}}{\left(1-x_{3}\right)^{2}}+1}\right) \\
& =\left(\frac{2}{\frac{1-x_{3}^{2}}{\left(1-x_{3}\right)^{2}}+1} \frac{x_{1}}{1-x_{3}}, \frac{2}{\frac{1-x_{3}^{2}}{\left(1-x_{3}\right)^{2}}+1} \frac{x_{2}}{1-x_{3}}, \frac{\frac{1-x_{3}^{2}}{\left(1-x_{3}\right)^{2}}-1}{\frac{1-x_{3}^{2}}{\left(1-x_{3}\right)^{2}}+1}\right) \\
& =\left(\frac{2\left(1-x_{3}\right)}{1-x_{3}^{2}+\left(1-x_{3}\right)^{2}} x_{1}, \frac{2\left(1-x_{3}\right)}{1-x_{3}^{2}+\left(1-x_{3}\right)^{2}} x_{2}, \frac{1-x_{3}^{2}-\left(1-x_{3}\right)^{2}}{1-x_{3}^{2}+\left(1-x_{3}\right)^{2}}\right)=\left(x_{1}, x_{2}, x_{3}\right) .
\end{aligned}
$$

Thus $k=g^{-1}$ and g is a homeomorphism.
(c) We first note that p is surjective since $g^{-1} \circ f$ is surjective onto $S^{2} \backslash\{(0,0,1)\}$ as a composition of homeomorphisms. Now, let $U \subset S^{2}$. If $(0,0,1) \notin U$, then $U \subset S^{2} \backslash\{(0,0,1)\}$ and U is open in $S^{2} \backslash\{(0,0,1)\}$ iff $p^{-1}(U)$ is open in $X \backslash S^{1}$ since $g^{-1} \circ f$ is a homeomorphism. Since $S^{2} \backslash\{(0,0,1)\}$ is open in S^{2} and $X \backslash S^{1}$ is open in X, this implies U is open in S^{2} if and only if $p^{-1}(U)$ is open in X.
Now assume $(0,0,1) \in U$. First suppose U is open in S^{2}. We must argue that $p^{-1}(U)$ is open in X. Fix $\mathbf{x}_{0} \in p^{-1}(U)$. If $\mathbf{x}_{0} \notin S^{1}$, then $p\left(\mathbf{x}_{0}\right)=g^{-1} \circ f\left(\mathbf{x}_{0}\right) \in U \backslash\{(0,0,1)\}$. Since this set is open and $g^{-1} \circ f$ is continuous at \mathbf{x}_{0}, there exists a neighborhood $V \subset X \backslash S^{1}$ of x_{0} satisfying $p(V)=g^{-1} \circ f(V) \subset U \backslash\{(0,0,1)\}$. Hence $V \subset p^{-1}(U)$. If $\mathbf{x}_{0} \in S^{1}$ then $p\left(\mathbf{x}_{0}\right)=(0,0,1)$. Since $U \ni(0,0,1)$ is open, there exists $\epsilon>0$ so that

$$
(-\epsilon, \epsilon) \times(-\epsilon, \epsilon) \times(1-\epsilon, 1+\epsilon) \subset U .
$$

Consequently, if $Z:=\left\{\mathbf{x} \in S^{2} \mid x_{3}>1-\epsilon\right\}$ then Z is open and $(0,0,1) \in Z \subset U$. Observe that for $\mathbf{x} \in Z \backslash\{(0,0,1)\}$ we have

$$
\|g(\mathbf{x})\|=\frac{\sqrt{x_{1}^{2}+x_{2}^{2}}}{1-x_{3}}=\frac{\sqrt{1-x_{3}^{2}}}{1-x_{3}}=\left(\frac{1+x_{3}}{1-x_{3}}\right)^{1 / 2}>\frac{1}{\sqrt{1-\epsilon}}
$$

and

$$
\left\|f^{-1}(g(\mathbf{x}))\right\|=\|h(g(\mathbf{x}))\|=\frac{\|g(\mathbf{x})\|}{1+\|g(\mathbf{x})\|}>\frac{1 / \sqrt{1-\epsilon}}{1+1 / \sqrt{1-\epsilon}}=\frac{1}{\sqrt{1-\epsilon}+1}=: \delta
$$

where we have used the fact that function $\frac{t}{1+t}$ is monotone. Thus $p^{-1}(Z)=\{\mathbf{x} \in X \mid \delta<\|\mathbf{x}\| \leq$ $1\}$, which is an open subset of X. Since $(0,0,1) \in Z \subset U$, we consequently have $\mathbf{x}_{0} \in p^{-1}(Z) \subset$ $p^{-1}(U)$. We have therefore shown that for any $\mathbf{x}_{0} \in p^{-1}(U)$ is there is a neighborhood of x_{0} contained in $p^{-1}(U)$; that is, $p^{-1}(U)$ is open.
Conversely, suppose $p^{-1}(U)$ is open and let $\mathbf{x}_{0} \in U$. If $x_{0} \neq(0,0,1)$, then there is a unique $\mathbf{y} \in p^{-1}(U) \backslash S^{1}$ with $p(\mathbf{y})=\mathbf{x}_{0}$. Since $p^{-1}(U) \subset S^{1}$ is open, there exists a neighborhood V of \mathbf{y} with $V \subset p^{-1}(U) \backslash S^{1}$. Then $p(V)=g^{-1} \circ f(V)$ is open since $g^{-1} \circ f$ is a homemorphism and $\mathbf{x}_{0} \in p(V) \subset U$. Finally, suppose $x_{0}=(0,0,1)$. We claim there exists $0<\delta<1$ so that $\{\mathbf{x} \in X \mid \delta<\|\mathbf{x}\| \leq 1\} \subset p^{-1}(U)$, in which case the above estimates imply $\mathbf{x}_{0} \in\left\{\mathbf{x} \in S^{2} \mid x_{3}>\right.$
$1-\epsilon\} \subset U$ for ϵ satisfying $\frac{1}{\sqrt{1-\epsilon}+1}=\delta$. Now, $S^{1} \subset p^{-1}(U)$ since $\mathbf{x}_{0}=(0,0,1) \in U$. For $\mathbf{y} \in S^{1}$ and $0<r<1$ consider the set

$$
B_{\mathbf{y}}(r):=\left\{\left(x_{1}, x_{2}\right) \in X \left\lvert\, \frac{y_{2}}{y_{1}}-(1-r)<\frac{x_{2}}{x_{1}}<\frac{y_{2}}{y_{1}}+(1-r)\right.,\left\|\left(x_{1}, x_{2}\right)\right\|>1-r\right\} .
$$

This is a segment of the annulus with inner radius $1-r$ and outer radius 1 which contains \mathbf{y} and is open in X. Since $p^{-1}(U)$ is open, for $\mathbf{y} \in=S^{1}$ it is easy to see visually that there exists $0<r(\mathbf{y})<1$ so that $B_{\mathbf{y}}(r(\mathbf{y})) \subset p^{-1}(U)$ (just choose $r(\mathbf{y})$ close enough to 1 so that $B_{\mathbf{y}}(r(\mathbf{y}))$ fits inside a ball centered at \mathbf{y} contained in $\left.p^{-1}(U)\right)$. Thus $\left\{B_{\mathbf{y}}(r(\mathbf{y})) \mid \mathbf{y} \in S^{1}\right\}$ is an open cover for S^{1}, which is a compact set since it is closed and bounded in \mathbb{R}^{2}. Hence there exists a finite subcover and the desired δ is the smallest $r(\mathbf{y})$ that appears in this finite subcover. Thus every $\mathbf{x}_{0} \in U$ has a neighborhood V satisfying $V \subset U$, and so U is open.
We have shown $U \subset S^{2}$ is open iff $p^{-1}(U) \subset X$ is open, and hence p is a quotient map.
(d) For $\mathbf{x} \in X \backslash S^{1},[\mathbf{x}]=\{\mathbf{x}\}$. For $\mathbf{x} \in S^{1},[\mathbf{x}]=S^{1}$. Thus X / \sim looks like a copy of X where the boundary S^{1} is a single point. The fact that X / \sim is homeomorphic to S^{2} follows from p being a quotient map and a corollary from $\S 22$.

