Math 461 Homework 9 Solutions 11/6/2020

Exercises:
§21, 22

1. Let X be a set and let Y be a metric space with metric d. Define a metric on YX by

p((yx)xEX; (Zx)xeX) = SUE E(yacy Zﬂc);
S

where d(y, z) = min{d(y, z), 1} is the standard bounded metric corresponding to d. Let f,, f: X =Y
be functions, n € N, and define f,,,f € YX by £, := (f,.(2))sex and f := (f(2))zex-

(a) Show that (f,)nen converges pointwise to f if and only if the sequence (f,)nen converges to f
when Y X is given the product topology.

(b) Show that (f,)nen converges uniformly to f if and only if the sequence (fu),en converges to f
when Y¥X is given the topology induced by the metric p.

2. Let X be a topological space. For a subset A C X, a retraction of X onto A is a continuous map
r: X — A satisfying r(a) = a for all a € A.

(a) Let p: X — Y be a continuous map between topological spaces. Show that if there exists a
continuous function f: Y — X so that p(f(y)) =y for all y € Y, then p is a quotient map.

(b) Show that a retraction is a quotient map.
3. Consider the following subset of R2:
A= {(x,y) € R? | either £ > 0 or y = 0 (or both)}.
Define ¢: A — R by ¢(x,y) = x. Show that ¢ is a quotient map, but is neither open nor closed.
4. Let X and Y be topological spaces and let p: X — Y be a surjective map.

(a) Show that a subset A C X is saturated with respect to p if and only if X \ A is saturated with
respect to p.

(b) Show that p(U) C Y is open for all saturated open sets U C X if and only if p(4) C Y is closed
for all saturated closed sets A C X.

(¢) Show that if p is an injective quotient map, then it is a homeomorphism.
5. Let X :=(0,1]U[2,3), Y := (0,2), and Z := (0,1] U (2,3) and define maps p: X =Y and ¢: X — Z

by
¢ fo<t<1 ¢ oift£2
t) = - d t) = .
p(t) {t—l if2<t<3 an a(t) {1 otherwise

Equip X and Y with their subspace topologies from R and equip Z with the quotient topology induced
by q.

(a) Show that p is a quotient map.

(b) Show that ¢ is a quotient map.

(¢) Show that f:Y — Z defined by

={ o
is a homeomorphism. [Hint: show fop=¢q/]
6*. Consider
Xi= (xR | x| < 1)
§? = {x € R | |x]| = 1}.

In this exercise you will show a quotient space of X is homeomorphic to S2.
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(a) Let S':={x € R? | ||x|| = 1}. Show that f: X \ S — R? defined by

1
69 = T

is a homeomorphism.

(b) Show that g: S\ {(0,0,1)} — R? defined by

is a homeomorphism.
(c) Show that p: X — S? defined by

g lof(x) ifxeX\S!
p(x) = .
(0,0,1) otherwise

is a quotient map.

(d) Define an equivalence relation on X by x ~ y if and only if p(x) = p(y). Describe the quotient
space X/ ~ and show that it is homeomorphic to S2.

Solutions:

1. (a) The sequence (f,)nen converges pointwise to f if and only if (f,(z))nen converges to f(z) for
all z € X. Let m,: YX — Y be the coordinate projection and note that 7,(f,) = f.(x) and
mx(f) = f(z). Thus (fn)nen converges pointwise to f if and only if (7, (f,))nen converges to
7 (f) for all x € X. By Exercise 5.(a) on Homework 6, this is further equivalent to (fn)nen
converges to f in the product topology on Y X. O

(b) (=) : Suppose (fn)nen converges uniformly to f. Let e > 0. Then there exists ng € N so that
for all n > ng and all z € X we have

d(fn(), f(2)) <

[N e)

The above further implies d(f,(z), f(z)) < §. Consequently, for n > ng we have

p(fn, ) = sup d(fal@), f(2)) <

< €.

[NCR e

Thus (fn))nen converges to f in the topology induced by p.

(<=) : Suppose (f,))nen converges to f in the topology induced by p. Let 0 < € < 1. Then there
exists ng € N so that for n > ny we have p(fa, f) < e. Consequently d(f,(z), f(z)) < € for all
x € X. Since € < 1, this implies d(f,(x), f(x)) < e. That is, for all n > ng and all x € X we have
d(fn(z), f(x)) < €. Thus (fn)nen converges uniformly to f. O

2. (a) First note that p is surjective: given any y € Y we have p(f(y)) = y and so p(X) =Y. Now, let
V C Y. If V is open, then the continuity of p implies p~!(V) C X is open. Conversely, assume
p~ (V) C X is open. We claim that f~1(p~1(V)) = V. Indeed, for y € V we have po f(y) =y
and thus y € (po f)~1(V) = f~1(p~1(V)). Conversely, if y € f~1(p~1(V)) then y = p(f(y)) € V.
Thus V = f~1(p~1(V)) and so the continuity of f implies V is open since p~*(V) is open. We
have shown V is open if and only if p~!(V) is open, and so p is a quotient map. O

(b) Let 7: X — A be a retraction. Recall that the inclusion map i: A — X defined by i(a) = a is
continuous. We also have r(i(a)) = r(a) = a for all @ € A. Thus r is a quotient map by the
previous part. O
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3.

4.

First observe that (z,0) € A for all z € R, and thus g(x,0) = z € ¢(A) for all x € R. That is, ¢ is
surjective. Since g is the restriction of a coordinate projection, it is continuous. By a proposition from
§22, to show ¢ is a quotient map it suffices to show ¢(U) is open for all saturated open sets U C A.
Let U C A be a saturated open set and let g € q(U). Then there exists (xg,y) € U. We claim that
(20,0) € U. Indeed, if zg < 0, then we must have y = 0 otherwise (zo,y) & A. If o > 0, then since
q(zg,0) = zo = q(z0,y) we have

(0,0) € ¢~ (q(U)) = U,

since U is saturated. Now, since U is open in A, there exists an open subset V C R? with U = V N A.
Since the square metric on R? induces its standard topology, it follows that there is € > 0 so that

(xo —€,x0 +€) X (—€,¢) C V.

Thus (xg — €,20 +€) x {0} CV N A=U. Consequently, (xg— €,z + €) C q(U). Since xg € q(U) was
arbitrary, it follows that ¢(U) is open. Thus ¢ is a quotient map.

Alternatively, one can also simply note that f: R — A defined by f(x) = (z,0) is continuous (since
its coordinate functions are continuous) and satisfies ¢(f(z)) = ¢(z,0) = z for all z € R. Thus ¢ is a
quotient map by Exercise 2.(a).

To see that ¢ is not an open map, consider U := [0,1) x (1,2) C A. This is open in A since U =
((-1,1) x (1,2)) N A. However, ¢(U) = [0,1) which is not open in R.

To see that ¢ is not a closed map, consider B := {(z,1) € R? | z > 0} C A. To see that this set is
closed in R? (and hence in A), suppose (z;, = );c; C B is a net converging to some (z¢, yo) € R?. Since
the coordinate projections are continuous, we see that the nets (x;);cr and (%))16 1 converge to xg and

Yo, respectively. By a lemma from §21 we know that f(¢) := % is continuous for ¢t > 0. Consequently,
(2)ier = (f(z:))icr converges to f(zo) = % Since R? is Hausdorff and has unique limits, it must be

that yg = :710 and so (zg,yo) € B. Thus B is closed. However, ¢(B) = (0,00) which is not closed in R.
(Il

(a) The symmetry between A and X \ A means it suffices to show the “only if” direction. Suppose
A is saturated with respect to p. We first claim that p(X \ A) =Y \ p(A). If y € p(X \ A), then
y = p(x) for some x € X \ A. If y € p(A), then z € p~1(p(4)) = A, a contradiction, and so
we must have y € Y \ p(4). Conversely, if y € Y \ p(A) then by surjectivity there exists © € X
with p(z) = y. If x € A then we would have y € p(A4), a contradiction, and so it must be that
x € X\ A. Thus y =p(z) € P(X \ A), which proves the claim. Using the claim we see that

P (XN A) = p (Y \ p(4)) = p~ (V) \ p~ (p(4)) = X \ A.

Thus X \ A is saturated. O

(b) (=) : Suppose p(U) C Y is open for all saturated open sets U C X. Let A C X be a saturated
closed set. Then U := X \ A is saturated by the previous part and is open. Thus p(U) = p(X \ A)
is open, but our claim from the previous part implies this equals Y \ p(A). Thus p(A) is closed.
(«<=) : This follows by changing all instances of “closed” to “open” and vice-versa in the previous
argument. g

(c) Let p: X — Y be an injective quotient map. Then p is a continuous bijection and so it remains
to show its inverse, call it g, is continuous. Observe that since p is injective, p~!(p(A4)) = A for
all A C X by Exercise 1 on Homework 1. That is, all subsets are saturated. Let U C X be open,
then ¢~}(U) = p(U). Since U is a saturated open set and p is a quotient map, a proposition from
§22 implies p(U) is open. Thus ¢ is continuous and therefore p is a homeomorphism. (|

(a) We first show p is surjective. Let y € Y. If y € (0,1] then p(y) = y, and otherwise p(y + 1) = y.
The fact that p is continuous follows from the pasting lemma: A := (0,1] and B := [2,3) are
closed in X, their union is all of X, p |4 (t) =t and p | (t) =t — 1 are continuous, and since
AN B = { there is no overlap to check. Let U C X be a saturated open set, and let y € p(U).
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6*.

If y = 1, then p(1) = 1 = p(2) implies 1,2 € p~*(p(U)) = U. Thus there exists ¢ > 0 so that
(1—¢€1]U[2,2+¢) CU. Thus

(1-—el14+¢€) =p((1-€1]U[2,24¢€)) CpU).

If y # 1, then y = p(x) for some z € (0,1) U (2,3), and = € p~(p(U)) = U. Thus there exists an
€ > 0 so that (z — e,z +¢) C U. It follows that (y — ¢,y + €) = p((x — ¢,z + €)) C p(U). Thus
in either case we have shown that there is a neighborhood of y that lies inside of p(U). Since
y € p(U) was arbitrary, this implies p(U) is open. A proposition from §22 then implies p is a
quotient map. O

This follows from the fact that Z has the quotient topology induced by ¢: V C Z is open if and
only if belongs to the topology which is the collection {U C Z | ¢~ }(U) C X is open}. O

We observe that for ¢ € (0,1] we have p(t) = ¢t € (0,1], and hence f(p(t)) = f(t) =t = q(1).
For t = 2, f(p(2)) = f(1) =1 = ¢(2). For ¢t € (2,3) we have p(t) =t —1 € (1,2), and hence
fp@®)=(t—1)+1=t=q(t). Thus fop = q. By a theorem from §22, ¢ = f op being a quotient
map implies f is a quotient map. We can also see that f is injective since its inverse is given by

the function g := p |z. Thus f is an injective quotient map and therefore a homeomorphism by
Exercise 4.(c). O

Since ||x|| is the distance from x to the origin in the euclidean metric, we know from Exercise
3 on Homework 8 that this function is continuous. Since subtraction is continuous, we further
know x — 1 — ||x|| is continuous and in particular is non-zero on X \ S'. Thus the coordinate
functions of f are continuous as the quotients of continuous functions (the coordinate projections)
by non-zero continuous functions. Consider the function

1
h = X.
&)= T

Since ||h(x)|| = % < 1, we see that h: R? — X \ S1. It is continuous since its coordinate

functions are continuous (by the same argument used on f above). Moreover, for x € R? we have

1 1 1 1

ey A A M ey e PR

foh(x)

X,

and for x € X \ S we have

1 1 1 1

] R T ey L ey P

ho f(x)

Thus h = f~! and so f is a bijection. Since both f and h are continuous, we see that f is a
homeomorphism. O

Observe that 1 — z3 # 0 for x = (21,72, 23) € S2\ {(0,0,1)}. Thus g is continuous since each of
its coordinate functions are continuous. For (z1,z2) € R?, consider

2 2 2?4+ a2 -1
X x .
Bl +1 Vel vad 41 al fag 41

k(z1, @) = (

Then £ is continuous because its coordinate functions are and we also note that
42 + 422 + (23 + 23 — 1)? _ 422 + 422 + (23 + 23)% = 2(2F +23) + 1
(2] + a3 + 1) af + 23 +1)?

[k (1, z2)||* = (
(@i ag)’ +2@i423)+ 1 (2T a3 +1)°
)

= =1
(23 + 23 +1)2 (23 + 23 +1)2
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Thus k is valued in S?, but since the third coordinate is strictly less than one, we see that
k:R? — 5%\ {(0,0,1)}. Finally, we observe that for x € R?

k(x) 1 ( 2 2 >
goR\X)= T1, T2
1— iziigﬁ 242 +1 2 a2+ 1

1 2

1
z%—i—az%—i—l—(z%—!—z%—l)(xl’ r2) =%,

and for x € 2\ {(0,0,1)} we have, using 2% + 23 = 1 — 23, that

_ X1 To
kog(X)_k(l—xg,l—l'g)

2 2

— 2 331 2 JZQ (1 IS)Q + (1 ) —_ 1
(1= tj)z * (1 x )2 1 (1—=z3)? - (1-=3)? + (1—963)2 + (1—363)2 +
1—:c§ 1
_ 1 2 T2 (I==z3)2
+11 ,ﬂ+11—$37ﬂ+1
e = =
1*«%3 2(1*.%3) 1—x3 (171-3) B
(1_553 (1—2s )2$1,1_w§+(1_x3)2x2,1 221 (1= 3) = (21,2, 3).

Thus k = ¢! and g is a homeomorphism. O

(c) We first note that p is surjective since g~! o f is surjective onto S? \ {(0,0,1)} as a composition

of homeomorphisms. Now, let U C S2. If (0,0,1) € U, then U C S?\ {(0,0,1)} and U is open in
S$2\{(0,0,1)} iff p~1(U) is open in X \ S* since g~1 o f is a homeomorphism. Since S5\ {(0,0,1)}
is open in S? and X \ S! is open in X, this implies U is open in S? if and only if p~1(U) is open
in X.
Now assume (0,0,1) € U. First suppose U is open in S2. We must argue that p~1(U) is open
in X. Fix xg € p~}(U). If xo € St, then p(x¢) = g~ ' o f(x0) € U\ {(0,0,1)}. Since this set is
open and g~! o f is continuous at xg, there exists a neighborhood V C X \ S! of x( satisfying
p(V) =g to f(V)CU\{(0,0,1)}. Hence V C p~1(U). If x¢g € S* then p(xo) = (0,0,1). Since
U > (0,0,1) is open, there exists € > 0 so that

(—€,€) X (—€,6) x (L—¢,1+€) CU.

Consequently, if Z := {x € S? | z3 > 1 — €} then Z is open and (0,0,1) € Z C U. Observe that
for x € Z\ {(0,0,1)} we have

xi+x 1— 22 1+2x 1/2 1
oG = YA+ _ Y ( ) >

l—2z3  1—a3 1— 23 1—¢

i

and

157 a6l = ot = 520 > e e

where we have used the fact that function 1% is monotone. Thus p~'(Z) = {x € X [ § < [|x[| <
1}, which is an open subset of X. Since (0,0,1) € Z C U, we consequently have xq € p~(Z) C
p~1(U). We have therefore shown that for any xq € p~(U) is there is a neighborhood of zg

contained in p~!(U); that is, p~1(U) is open.

Conversely, suppose p~1(U) is open and let xq € U. If zg # (0,0,1), then there is a unique
y € p~}(U) \ S* with p(y) = xo. Since p~1(U) C S* is open, there exists a neighborhood V'
of y with V.C p~1(U) \ S*. Then p(V) = g~! o f(V) is open since g~! o f is a homemorphism
and x9 € p(V) C U. Finally, suppose zg = (0,0,1). We claim there exists 0 < § < 1 so that
{x€ X |6 <|x| <1} Ccp Y (U), in which case the above estimates imply xq € {x € S? | x5 >
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1 — €} C U for e satisfying ﬁ = 4. Now, S c p~}(U) since xg = (0,0,1) € U. For y € St
and 0 < r < 1 consider the set

By(r)i={(er, ) e X | 2 —(1-r) < Z < 2L (1-0), J(@r,0)]| > 1 -1},
Y1 1 N

This is a segment of the annulus with inner radius 1 — r and outer radius 1 which contains y
and is open in X. Since p~!(U) is open, for y €= S it is easy to see visually that there exists
0 < r(y) < 1 so that By(r(y)) C p~*(U) (just choose r(y) close enough to 1 so that By (r(y))
fits inside a ball centered at y contained in p~'(U)). Thus {By(r(y)) | y € S'} is an open cover
for S', which is a compact set since it is closed and bounded in R?. Hence there exists a finite
subcover and the desired ¢ is the smallest 7(y) that appears in this finite subcover. Thus every
xg € U has a neighborhood V satisfying V C U, and so U is open.
We have shown U C S? is open iff p~1(U) C X is open, and hence p is a quotient map.

For x € X \ S1, [x] = {x}. For x € S', [x] = S!. Thus X/ ~ looks like a copy of X where the
boundary S! is a single point. The fact that X/ ~ is homeomorphic to S? follows from p being a
quotient map and a corollary from §22. |

6 @©Brent Nelson 2020



