
Math 461 Homework 9 Solutions 11/6/2020

Exercises:
§21, 22

1. Let X be a set and let Y be a metric space with metric d. Define a metric on Y X by

ρ((yx)x∈X , (zx)x∈X) := sup
x∈X

d(yx, zx),

where d(y, z) = min{d(y, z), 1} is the standard bounded metric corresponding to d. Let fn, f : X → Y
be functions, n ∈ N, and define fn, f ∈ Y X by fn := (fn(x))x∈X and f := (f(x))x∈X .

(a) Show that (fn)n∈N converges pointwise to f if and only if the sequence (fn)n∈N converges to f
when Y X is given the product topology.

(b) Show that (fn)n∈N converges uniformly to f if and only if the sequence (fn)n∈N converges to f
when Y X is given the topology induced by the metric ρ.

2. Let X be a topological space. For a subset A ⊂ X, a retraction of X onto A is a continuous map
r : X → A satisfying r(a) = a for all a ∈ A.

(a) Let p : X → Y be a continuous map between topological spaces. Show that if there exists a
continuous function f : Y → X so that p(f(y)) = y for all y ∈ Y , then p is a quotient map.

(b) Show that a retraction is a quotient map.

3. Consider the following subset of R2:

A := {(x, y) ∈ R2 | either x ≥ 0 or y = 0 (or both)}.

Define q : A→ R by q(x, y) = x. Show that q is a quotient map, but is neither open nor closed.

4. Let X and Y be topological spaces and let p : X → Y be a surjective map.

(a) Show that a subset A ⊂ X is saturated with respect to p if and only if X \ A is saturated with
respect to p.

(b) Show that p(U) ⊂ Y is open for all saturated open sets U ⊂ X if and only if p(A) ⊂ Y is closed
for all saturated closed sets A ⊂ X.

(c) Show that if p is an injective quotient map, then it is a homeomorphism.

5. Let X := (0, 1] ∪ [2, 3), Y := (0, 2), and Z := (0, 1] ∪ (2, 3) and define maps p : X → Y and q : X → Z
by

p(t) :=

{
t if 0 < t ≤ 1

t− 1 if 2 ≤ t < 3
and q(t) :=

{
t if t 6= 2

1 otherwise
.

Equip X and Y with their subspace topologies from R and equip Z with the quotient topology induced
by q.

(a) Show that p is a quotient map.

(b) Show that q is a quotient map.

(c) Show that f : Y → Z defined by

f(t) :=

{
t if 0 < t ≤ 1

t+ 1 if 1 < t < 2

is a homeomorphism. [Hint: show f ◦ p = q.]

6*. Consider

X := {x ∈ R2 | ‖x‖ ≤ 1}
S2 := {x ∈ R3 | ‖x‖ = 1}.

In this exercise you will show a quotient space of X is homeomorphic to S2.
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(a) Let S1 := {x ∈ R2 | ‖x‖ = 1}. Show that f : X \ S1 → R2 defined by

f(x) :=
1

1− ‖x‖
x

is a homeomorphism.

(b) Show that g : S2 \ {(0, 0, 1)} → R2 defined by

g(x) :=
1

1− x3
(x1, x2)

is a homeomorphism.

(c) Show that p : X → S2 defined by

p(x) :=

{
g−1 ◦ f(x) if x ∈ X \ S1

(0, 0, 1) otherwise

is a quotient map.

(d) Define an equivalence relation on X by x ∼ y if and only if p(x) = p(y). Describe the quotient
space X/ ∼ and show that it is homeomorphic to S2.

———————————————————————————————————————————–

Solutions:

1. (a) The sequence (fn)n∈N converges pointwise to f if and only if (fn(x))n∈N converges to f(x) for
all x ∈ X. Let πx : Y X → Y be the coordinate projection and note that πx(fn) = fn(x) and
πx(f) = f(x). Thus (fn)n∈N converges pointwise to f if and only if (πx(fn))n∈N converges to
πx(f) for all x ∈ X. By Exercise 5.(a) on Homework 6, this is further equivalent to (fn)n∈N
converges to f in the product topology on Y X . �

(b) (=⇒) : Suppose (fn)n∈N converges uniformly to f . Let ε > 0. Then there exists n0 ∈ N so that
for all n ≥ n0 and all x ∈ X we have

d(fn(x), f(x)) <
ε

2
.

The above further implies d(fn(x), f(x)) < ε
2 . Consequently, for n ≥ n0 we have

ρ(fn, f) = sup
x∈X

d(fn(x), f(x)) ≤ ε

2
< ε.

Thus (fn))n∈N converges to f in the topology induced by ρ.

(⇐=) : Suppose (fn))n∈N converges to f in the topology induced by ρ. Let 0 < ε < 1. Then there
exists n0 ∈ N so that for n ≥ n0 we have ρ(fn, f) < ε. Consequently d(fn(x), f(x)) < ε for all
x ∈ X. Since ε < 1, this implies d(fn(x), f(x)) < ε. That is, for all n ≥ n0 and all x ∈ X we have
d(fn(x), f(x)) < ε. Thus (fn)n∈N converges uniformly to f . �

2. (a) First note that p is surjective: given any y ∈ Y we have p(f(y)) = y and so p(X) = Y . Now, let
V ⊂ Y . If V is open, then the continuity of p implies p−1(V ) ⊂ X is open. Conversely, assume
p−1(V ) ⊂ X is open. We claim that f−1(p−1(V )) = V . Indeed, for y ∈ V we have p ◦ f(y) = y
and thus y ∈ (p ◦ f)−1(V ) = f−1(p−1(V )). Conversely, if y ∈ f−1(p−1(V )) then y = p(f(y)) ∈ V .
Thus V = f−1(p−1(V )) and so the continuity of f implies V is open since p−1(V ) is open. We
have shown V is open if and only if p−1(V ) is open, and so p is a quotient map. �

(b) Let r : X → A be a retraction. Recall that the inclusion map i : A → X defined by i(a) = a is
continuous. We also have r(i(a)) = r(a) = a for all a ∈ A. Thus r is a quotient map by the
previous part. �
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3. First observe that (x, 0) ∈ A for all x ∈ R, and thus q(x, 0) = x ∈ q(A) for all x ∈ R. That is, q is
surjective. Since q is the restriction of a coordinate projection, it is continuous. By a proposition from
§22, to show q is a quotient map it suffices to show q(U) is open for all saturated open sets U ⊂ A.
Let U ⊂ A be a saturated open set and let x0 ∈ q(U). Then there exists (x0, y) ∈ U . We claim that
(x0, 0) ∈ U . Indeed, if x0 < 0, then we must have y = 0 otherwise (x0, y) 6∈ A. If x0 ≥ 0, then since
q(x0, 0) = x0 = q(x0, y) we have

(x0, 0) ∈ q−1(q(U)) = U,

since U is saturated. Now, since U is open in A, there exists an open subset V ⊂ R2 with U = V ∩A.
Since the square metric on R2 induces its standard topology, it follows that there is ε > 0 so that

(x0 − ε, x0 + ε)× (−ε, ε) ⊂ V.

Thus (x0 − ε, x0 + ε)× {0} ⊂ V ∩A = U . Consequently, (x0 − ε, x0 + ε) ⊂ q(U). Since x0 ∈ q(U) was
arbitrary, it follows that q(U) is open. Thus q is a quotient map.

Alternatively, one can also simply note that f : R → A defined by f(x) = (x, 0) is continuous (since
its coordinate functions are continuous) and satisfies q(f(x)) = q(x, 0) = x for all x ∈ R. Thus q is a
quotient map by Exercise 2.(a).

To see that q is not an open map, consider U := [0, 1) × (1, 2) ⊂ A. This is open in A since U =
((−1, 1)× (1, 2)) ∩A. However, q(U) = [0, 1) which is not open in R.

To see that q is not a closed map, consider B := {(x, 1x ) ∈ R2 | x > 0} ⊂ A. To see that this set is
closed in R2 (and hence in A), suppose (xi,

1
xi

)i∈I ⊂ B is a net converging to some (x0, y0) ∈ R2. Since

the coordinate projections are continuous, we see that the nets (xi)i∈I and ( 1
xi

))i∈I converge to x0 and

y0, respectively. By a lemma from §21 we know that f(t) := 1
t is continuous for t > 0. Consequently,

( 1
xi

)i∈I = (f(xi))i∈I converges to f(x0) = 1
x0

. Since R2 is Hausdorff and has unique limits, it must be

that y0 = 1
x0

and so (x0, y0) ∈ B. Thus B is closed. However, q(B) = (0,∞) which is not closed in R.
�

4. (a) The symmetry between A and X \ A means it suffices to show the “only if” direction. Suppose
A is saturated with respect to p. We first claim that p(X \A) = Y \ p(A). If y ∈ p(X \A), then
y = p(x) for some x ∈ X \ A. If y ∈ p(A), then x ∈ p−1(p(A)) = A, a contradiction, and so
we must have y ∈ Y \ p(A). Conversely, if y ∈ Y \ p(A) then by surjectivity there exists x ∈ X
with p(x) = y. If x ∈ A then we would have y ∈ p(A), a contradiction, and so it must be that
x ∈ X \A. Thus y = p(x) ∈ P (X \A), which proves the claim. Using the claim we see that

p−1(p(X \A)) = p−1(Y \ p(A)) = p−1(Y ) \ p−1(p(A)) = X \A.

Thus X \A is saturated. �

(b) (=⇒) : Suppose p(U) ⊂ Y is open for all saturated open sets U ⊂ X. Let A ⊂ X be a saturated
closed set. Then U := X \A is saturated by the previous part and is open. Thus p(U) = p(X \A)
is open, but our claim from the previous part implies this equals Y \ p(A). Thus p(A) is closed.

(⇐=) : This follows by changing all instances of “closed” to “open” and vice-versa in the previous
argument. �

(c) Let p : X → Y be an injective quotient map. Then p is a continuous bijection and so it remains
to show its inverse, call it q, is continuous. Observe that since p is injective, p−1(p(A)) = A for
all A ⊂ X by Exercise 1 on Homework 1. That is, all subsets are saturated. Let U ⊂ X be open,
then q−1(U) = p(U). Since U is a saturated open set and p is a quotient map, a proposition from
§22 implies p(U) is open. Thus q is continuous and therefore p is a homeomorphism. �

5. (a) We first show p is surjective. Let y ∈ Y . If y ∈ (0, 1] then p(y) = y, and otherwise p(y + 1) = y.
The fact that p is continuous follows from the pasting lemma: A := (0, 1] and B := [2, 3) are
closed in X, their union is all of X, p |A (t) = t and p |B (t) = t − 1 are continuous, and since
A ∩ B = ∅ there is no overlap to check. Let U ⊂ X be a saturated open set, and let y ∈ p(U).
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If y = 1, then p(1) = 1 = p(2) implies 1, 2 ∈ p−1(p(U)) = U . Thus there exists ε > 0 so that
(1− ε, 1] ∪ [2, 2 + ε) ⊂ U . Thus

(1− ε, 1 + ε) = p((1− ε, 1] ∪ [2, 2 + ε)) ⊂ p(U).

If y 6= 1, then y = p(x) for some x ∈ (0, 1) ∪ (2, 3), and x ∈ p−1(p(U)) = U . Thus there exists an
ε > 0 so that (x − ε, x + ε) ⊂ U . It follows that (y − ε, y + ε) = p((x − ε, x + ε)) ⊂ p(U). Thus
in either case we have shown that there is a neighborhood of y that lies inside of p(U). Since
y ∈ p(U) was arbitrary, this implies p(U) is open. A proposition from §22 then implies p is a
quotient map. �

(b) This follows from the fact that Z has the quotient topology induced by q: V ⊂ Z is open if and
only if belongs to the topology which is the collection {U ⊂ Z | q−1(U) ⊂ X is open}. �

(c) We observe that for t ∈ (0, 1] we have p(t) = t ∈ (0, 1], and hence f(p(t)) = f(t) = t = q(t).
For t = 2, f(p(2)) = f(1) = 1 = q(2). For t ∈ (2, 3) we have p(t) = t − 1 ∈ (1, 2), and hence
f(p(t)) = (t−1)+1 = t = q(t). Thus f ◦p = q. By a theorem from §22, q = f ◦p being a quotient
map implies f is a quotient map. We can also see that f is injective since its inverse is given by
the function g := p |Z . Thus f is an injective quotient map and therefore a homeomorphism by
Exercise 4.(c). �

6*. (a) Since ‖x‖ is the distance from x to the origin in the euclidean metric, we know from Exercise
3 on Homework 8 that this function is continuous. Since subtraction is continuous, we further
know x 7→ 1 − ‖x‖ is continuous and in particular is non-zero on X \ S1. Thus the coordinate
functions of f are continuous as the quotients of continuous functions (the coordinate projections)
by non-zero continuous functions. Consider the function

h(x) :=
1

1 + ‖x‖
x.

Since ‖h(x)‖ = ‖x‖
1+‖x‖ < 1, we see that h : R2 → X \ S1. It is continuous since its coordinate

functions are continuous (by the same argument used on f above). Moreover, for x ∈ R2 we have

f ◦ h(x) =
1

1− ‖h(x)‖
h(x) =

1

1− ‖x‖
1+‖x‖

1

1 + ‖x‖
x =

1

1 + ‖x‖ − ‖x‖
x = x,

and for x ∈ X \ S1 we have

h ◦ f(x) =
1

1 + ‖f(x)‖
f(x) =

1

1 + ‖x‖
1−‖x‖

1

1− ‖x‖
x =

1

1− ‖x‖+ ‖x‖
x = x.

Thus h = f−1 and so f is a bijection. Since both f and h are continuous, we see that f is a
homeomorphism. �

(b) Observe that 1− x3 6= 0 for x = (x1, x2, x3) ∈ S2 \ {(0, 0, 1)}. Thus g is continuous since each of
its coordinate functions are continuous. For (x1, x2) ∈ R2, consider

k(x1, x2) :=

(
2

x21 + x22 + 1
x1,

2

x21 + x22 + 1
x2,

x21 + x22 − 1

x21 + x22 + 1

)
.

Then k is continuous because its coordinate functions are and we also note that

‖k(x1, x2)‖2 =
4x21 + 4x22 + (x21 + x22 − 1)2

(x21 + x22 + 1)2
=

4x21 + 4x22 + (x21 + x22)2 − 2(x21 + x22) + 1

(x21 + x22 + 1)2

=
(x21 + x22)2 + 2(x21 + x22) + 1

(x21 + x22 + 1)2
=

(x21 + x22 + 1)2

(x21 + x22 + 1)2
= 1
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Thus k is valued in S2, but since the third coordinate is strictly less than one, we see that
k : R2 → S2 \ {(0, 0, 1)}. Finally, we observe that for x ∈ R2

g ◦ k(x) =
1

1− x2
1+x

2
2−1

x2
1+x

2
2+1

(
2

x21 + x22 + 1
x1,

2

x21 + x22 + 1
x2

)

=
1

x21 + x22 + 1− (x21 + x22 − 1)
(2x1, 2x2) = x,

and for x ∈ S2 \ {(0, 0, 1)} we have, using x21 + x22 = 1− x23, that

k ◦ g(x) = k

(
x1

1− x2
,

x2
1− x3

)

=

 2
x2
1

(1−x3)2
+

x2
2

(1−x3)2
+ 1

x1
1− x3

,
2

x2
1

(1−x3)2
+

x2
2

(1−x3)2
+ 1

x2
1− x3

,

x2
1

(1−x3)2
+

x2
2

(1−x3)2
− 1

x2
1

(1−x3)2
+

x2
2

(1−x3)2
+ 1


=

 2
1−x2

3

(1−x3)2
+ 1

x1
1− x3

,
2

1−x2
3

(1−x3)2
+ 1

x2
1− x3

,

1−x2
3

(1−x3)2
− 1

1−x2
3

(1−x3)2
+ 1


=

(
2(1− x3)

1− x23 + (1− x3)2
x1,

2(1− x3)

1− x23 + (1− x3)2
x2,

1− x23 − (1− x3)2

1− x23 + (1− x3)2

)
= (x1, x2, x3).

Thus k = g−1 and g is a homeomorphism. �

(c) We first note that p is surjective since g−1 ◦ f is surjective onto S2 \ {(0, 0, 1)} as a composition
of homeomorphisms. Now, let U ⊂ S2. If (0, 0, 1) 6∈ U , then U ⊂ S2 \ {(0, 0, 1)} and U is open in
S2 \{(0, 0, 1)} iff p−1(U) is open in X \S1 since g−1 ◦f is a homeomorphism. Since S2 \{(0, 0, 1)}
is open in S2 and X \ S1 is open in X, this implies U is open in S2 if and only if p−1(U) is open
in X.

Now assume (0, 0, 1) ∈ U . First suppose U is open in S2. We must argue that p−1(U) is open
in X. Fix x0 ∈ p−1(U). If x0 6∈ S1, then p(x0) = g−1 ◦ f(x0) ∈ U \ {(0, 0, 1)}. Since this set is
open and g−1 ◦ f is continuous at x0, there exists a neighborhood V ⊂ X \ S1 of x0 satisfying
p(V ) = g−1 ◦ f(V ) ⊂ U \ {(0, 0, 1)}. Hence V ⊂ p−1(U). If x0 ∈ S1 then p(x0) = (0, 0, 1). Since
U 3 (0, 0, 1) is open, there exists ε > 0 so that

(−ε, ε)× (−ε, ε)× (1− ε, 1 + ε) ⊂ U.

Consequently, if Z := {x ∈ S2 | x3 > 1 − ε} then Z is open and (0, 0, 1) ∈ Z ⊂ U . Observe that
for x ∈ Z \ {(0, 0, 1)} we have

‖g(x)‖ =

√
x21 + x22
1− x3

=

√
1− x23

1− x3
=

(
1 + x3
1− x3

)1/2

>
1√

1− ε
,

and

‖f−1(g(x))‖ = ‖h(g(x))‖ =
‖g(x)‖

1 + ‖g(x)‖
>

1/
√

1− ε
1 + 1/

√
1− ε

=
1√

1− ε+ 1
=: δ,

where we have used the fact that function t
1+t is monotone. Thus p−1(Z) = {x ∈ X | δ < ‖x‖ ≤

1}, which is an open subset of X. Since (0, 0, 1) ∈ Z ⊂ U , we consequently have x0 ∈ p−1(Z) ⊂
p−1(U). We have therefore shown that for any x0 ∈ p−1(U) is there is a neighborhood of x0
contained in p−1(U); that is, p−1(U) is open.

Conversely, suppose p−1(U) is open and let x0 ∈ U . If x0 6= (0, 0, 1), then there is a unique
y ∈ p−1(U) \ S1 with p(y) = x0. Since p−1(U) ⊂ S1 is open, there exists a neighborhood V
of y with V ⊂ p−1(U) \ S1. Then p(V ) = g−1 ◦ f(V ) is open since g−1 ◦ f is a homemorphism
and x0 ∈ p(V ) ⊂ U . Finally, suppose x0 = (0, 0, 1). We claim there exists 0 < δ < 1 so that
{x ∈ X | δ < ‖x‖ ≤ 1} ⊂ p−1(U), in which case the above estimates imply x0 ∈ {x ∈ S2 | x3 >
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1 − ε} ⊂ U for ε satisfying 1√
1−ε+1

= δ. Now, S1 ⊂ p−1(U) since x0 = (0, 0, 1) ∈ U . For y ∈ S1

and 0 < r < 1 consider the set

By(r) := {(x1, x2) ∈ X | y2
y1
− (1− r) < x2

x1
<
y2
y1

+ (1− r), ‖(x1, x2)‖ > 1− r}.

This is a segment of the annulus with inner radius 1 − r and outer radius 1 which contains y
and is open in X. Since p−1(U) is open, for y ∈= S1 it is easy to see visually that there exists
0 < r(y) < 1 so that By(r(y)) ⊂ p−1(U) (just choose r(y) close enough to 1 so that By(r(y))
fits inside a ball centered at y contained in p−1(U)). Thus {By(r(y)) | y ∈ S1} is an open cover
for S1, which is a compact set since it is closed and bounded in R2. Hence there exists a finite
subcover and the desired δ is the smallest r(y) that appears in this finite subcover. Thus every
x0 ∈ U has a neighborhood V satisfying V ⊂ U , and so U is open.

We have shown U ⊂ S2 is open iff p−1(U) ⊂ X is open, and hence p is a quotient map.

(d) For x ∈ X \ S1, [x] = {x}. For x ∈ S1, [x] = S1. Thus X/ ∼ looks like a copy of X where the
boundary S1 is a single point. The fact that X/ ∼ is homeomorphic to S2 follows from p being a
quotient map and a corollary from §22. �
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