Exercises:

§20, 21

1. Let X be a metric space with metric d. Prove the reverse triangle inequality: for all $x, y, z \in X$

$$
|d(x, y)-d(y, z)| \leq d(x, z) .
$$

2. Recall that the uniform metric on $\mathbb{R}^{\mathbb{N}}$ is defined as

$$
\bar{\rho}(\mathbf{x}, \mathbf{y})=\sup _{n \in \mathbb{N}} \bar{d}\left(x_{n}, y_{n}\right),
$$

where $\bar{d}\left(x_{n}, y_{n}\right)=\min \left\{\left|x_{n}-y_{n}\right|, 1\right\}$ is the standard bounded metric on \mathbb{R}.
(a) Show that $\bar{\rho}$ is a metric.
(b) Let $C \subset \mathbb{R}^{\mathbb{N}}$ be the subset from Exercise 4 on Homework 6. Determine \bar{C} when $\mathbb{R}^{\mathbb{N}}$ has the topology induced by $\bar{\rho}$.
(c) Let $h: \mathbb{R}^{\mathbb{N}} \rightarrow \mathbb{R}^{\mathbb{N}}$ be the function from Exercise 1 on Homework 7. Find necessary and sufficient conditions on the sequences $\left(a_{n}\right)_{n \in \mathbb{N}},\left(b_{n}\right)_{n \in \mathbb{N}}$ which guarantee h is continuous when $\mathbb{R}^{\mathbb{N}}$ has the topology induced by $\bar{\rho}$.
(d) For $\mathbf{x} \in \mathbb{R}^{\mathbb{N}}$ and $\epsilon>0$, show that

$$
U:=\left(x_{1}-\epsilon, x_{1}+\epsilon\right) \times\left(x_{2}-\epsilon, x_{2}+\epsilon\right) \times \cdots
$$

is not open with respect to the topology induced by $\bar{\rho}$.
3. Let X be a metric space with metric d. For fixed $x_{0} \in X$, show that the function $f: X \rightarrow \mathbb{R}$ defined by $f(x)=d\left(x, x_{0}\right)$ is continuous.
4. Let X be a metric space with metric d, and let $\left(x_{i}\right)_{i \in I} \subset X$ be a net.
(a) Show that $\left(x_{i}\right)_{i \in I}$ converges to $x_{0} \in X$ if and only if the net $\left(d\left(x_{i}, x_{0}\right)\right)_{i \in I} \subset \mathbb{R}$ converges to 0 .
(b) Show that if $\left(x_{i}\right)_{i \in I}$ converges to $x_{0} \in X$, then one can find a sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset\left\{x_{i} \mid i \in I\right\}$ converging to x_{0}.
5. For each $n \in \mathbb{N}$, define $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f_{n}(x)=\frac{1}{1+(x-n)^{2}} .
$$

Show that the sequence of functions $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges to the zero function pointwise but not uniformly.
6^{*}. Let $\ell^{2} \subset \mathbb{R}^{\mathbb{N}}$ be the set of sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ for which the series $\sum_{n=1}^{\infty} x_{n}^{2}$ converges. For $\mathbf{x}=\left(x_{n}\right)_{n \in \mathbb{N}} \in$ ℓ^{2} denote

$$
\|\mathbf{x}\|_{2}:=\left(\sum_{n=1}^{\infty} x_{n}^{2}\right)^{1 / 2}
$$

(a) For $\mathbf{x} \in \ell^{2}$ and $c \in \mathbb{R}$, show that $c \mathbf{x} \in \ell^{2}$ with $\|c \mathbf{x}\|_{2}=|c|\|\mathbf{x}\|_{2}$.
(b) For $\mathbf{x}, \mathbf{y} \in \ell^{2}$, show that the series $\sum_{n=1}^{\infty}\left|x_{n} y_{n}\right|$ converges and is bounded by $\|\mathbf{x}\|_{2}\|\mathbf{y}\|_{2}$.
(c) For $\mathbf{x}, \mathbf{y} \in \ell^{2}$, show that $\mathbf{x}+\mathbf{y} \in \ell^{2}$ with $\|\mathbf{x}+\mathbf{y}\|_{2} \leq\|\mathbf{x}\|_{2}+\|\mathbf{y}\|_{2}$.
(d) Show that $d_{2}(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|_{2}$ defines a metric on ℓ^{2}.
(e) Show that the topology induced by d_{2} is finer than the uniform topology but coarser than the box topology on ℓ^{2}.

Solutions:

1. Let $x, y, z \in X$. We must show

$$
-d(x, z) \leq d(x, y)-d(y, z) \leq d(x, z)
$$

Observe that the first inequality is equivalent to $d(y, z) \leq d(x, y)+d(x, z)$. Using the symmetry of d, this is futher equivalent to $d(y, z) \leq d(y, x)+d(x, z)$, which holds by the usual triangle inequality on d. The second inequality above is equivalent to $d(x, y) \leq d(x, z)+d(y, z)$. Once more using the symmetry of d this is further equivalent to $d(x, y) \leq d(x, z)+d(z, y)$, which again follows from the usual triangle inequality on d.
2. (a) Clearly $\bar{\rho}(\mathbf{x}, \mathbf{y}) \geq 0$ and if $\mathbf{x}=\mathbf{y}$ then we have equality. Conversely, if $\bar{\rho}(\mathbf{x}, \mathbf{y})=0$ then we must have $\bar{d}\left(x_{n}, y_{n}\right)=0$ for all $n \in \mathbb{N}$, which implies $x_{n}=y_{n}$ for all $n \in \mathbb{N}$ or $\mathbf{x}=\mathbf{y}$. The symmetry $\bar{\rho}(\mathbf{x}, \mathbf{y})=\bar{\rho}(\mathbf{y}, \mathbf{x})$ follows from the symmetry of \bar{d}. Finally, let $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^{\mathbb{N}}$. For each $n \in \mathbb{N}$ we have by the triangle inequality applied to \bar{d}

$$
\bar{d}\left(x_{n}, z_{n}\right) \leq \bar{d}\left(x_{n}, y_{n}\right)+\bar{d}\left(y_{n}, z_{n}\right) \leq \bar{\rho}(\mathbf{x}, \mathbf{y})+\bar{\rho}(\mathbf{y}, \mathbf{z})
$$

Consequently,

$$
\bar{\rho}(\mathbf{x}, \mathbf{z})=\sup _{n \in \mathbb{N}} \bar{d}\left(x_{n}, z_{n}\right) \leq \bar{\rho}(\mathbf{x}, \mathbf{y})+\bar{\rho}(\mathbf{y}, \mathbf{z})
$$

So $\bar{\rho}$ satisfies the triangle inequality and consequently is a metric.
(b) Let $D \subset \mathbb{R}^{\mathbb{N}}$ be the set of sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ satisfying $\lim _{n \rightarrow \infty} x_{n}=0$. We claim $\bar{C}=D$. We first show that D is closed with respect to the topology induced by $\bar{\rho}$. Let $\mathbf{x}=\left(x_{n}\right)_{n \in \mathbb{N}} \in D^{c}$, then the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ does not converge to zero. This means there exists $\epsilon>0$ so that for any $N \in \mathbb{N}$ there exists $n \geq N$ with $\left|x_{n}-0\right|=\left|x_{n}\right| \geq \epsilon$. Note that this still holds after replacing ϵ with $\min \{\epsilon, 1\}$, so we may assume $\epsilon \leq 1$, in which case we have $\bar{d}\left(x_{n}, 0\right) \geq \epsilon$. We claim that $B_{\bar{\rho}}\left(\mathbf{x}, \frac{\epsilon}{2}\right) \subset D^{c}$. Indeed, for \mathbf{y} in this ball we have for all $n \in \mathbb{N} \bar{d}\left(x_{n}, y_{n}\right) \leq \bar{\rho}(\mathbf{x}, \mathbf{y})<\frac{\epsilon}{2}$. Applying Exercise 1 to \bar{d} yields

$$
\left|y_{n}\right| \geq \bar{d}\left(0, y_{n}\right) \geq\left|\bar{d}\left(0, x_{n}\right)-\bar{d}\left(x_{n}, y_{n}\right)\right| \geq \bar{d}\left(0, x_{n}\right)-\bar{d}\left(x_{n}, y_{n}\right)>\bar{d}\left(0, x_{n}\right)-\frac{\epsilon}{2}
$$

Thus whenever $n \in \mathbb{N}$ is such that $\bar{d}\left(x_{n}, 0\right) \geq \epsilon$, we have $\left|y_{n}\right| \geq \epsilon-\frac{\epsilon}{2}=\frac{\epsilon}{2}$. Since this happens infinitely often for $\left(x_{n}\right)_{n \in \mathbb{N}}$, it follows that $\left(y_{n}\right)_{n \in \mathbb{N}}$ does not converge to zero. Thus $\mathbf{y} \in D^{c}$ and therefore $B_{\bar{\rho}}\left(\mathbf{x}, \frac{\epsilon}{2}\right) \subset D^{c}$. Since $\mathbf{x} \in D^{c}$ was arbitrary, this shows D^{c} is open in the topology induced by $\bar{\rho}$.
Thus D is a closed set and since $C \subset D$ we have $\bar{C} \subset D$. For the reverse inclusion, let $\mathbf{x} \in D$. We'll show that $B_{\bar{\rho}}(\mathbf{x}, \epsilon) \cap C \neq \emptyset$ for all $\epsilon>0$, which will imply $\mathbf{x} \in \bar{C}$. Given $\epsilon>0$, let $N \in \mathbb{N}$ be such that $\left|x_{n}\right|<\frac{\epsilon}{2}$ for all $n \geq N$. Consider $\mathbf{y} \in C$ defined by $y_{n}:=x_{n}$ if $n<N$ and $y_{n}:=0$ if $n \geq N$. Thus for each $n \in \mathbb{N}$

$$
\bar{d}\left(x_{n}, y_{n}\right)=\leq\left|x_{n}-y_{n}\right|=\left\{\begin{array}{ll}
0 & \text { if } n<N \\
\left|x_{n}\right| & \text { if } n \geq N
\end{array}<\frac{\epsilon}{2} .\right.
$$

Consequently, $\bar{\rho}(\mathbf{x}, \mathbf{y}) \leq \frac{\epsilon}{2}<\epsilon$ and thus $\mathbf{y} \in B_{\bar{\rho}}(\mathbf{x}, \epsilon)$. This shows $B_{\bar{\rho}}(\mathbf{x}, \epsilon) \cap C \neq \emptyset$ and therefore $\mathrm{x} \in \bar{C}$. Therefore $D \subset \bar{C}$ and hence $D=\bar{C}$.
(c) We claim that h is continuous if and only if $\left(a_{n}\right)_{n \in \mathbb{N}}$ is bounded. First suppose $\left(a_{n}\right)_{n \in \mathbb{N}}$ is bounded and let $A:=\sup _{n \in \mathbb{N}} a_{n}$. Recall that $a_{n}>0$ for all $n \in \mathbb{N}$ and so $A>0$. We will use the $\epsilon-\delta$ definition of continuity. Let $0<\epsilon<1$ and set $\delta:=\frac{\epsilon}{A+1}$ so that $0<\delta<1$. If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{\mathbb{N}}$ satisfy $\bar{\rho}(\mathbf{x}, \mathbf{y})<\delta$, then $\bar{d}\left(x_{n}, y_{n}\right)<\delta<1$ for all $n \in \mathbb{N}$ and therefore $\bar{d}\left(x_{n}, y_{n}\right)=\left|x_{n}-y_{n}\right|$. Now, for
such \mathbf{x}, \mathbf{y} we have

$$
\begin{aligned}
\bar{\rho}(h(\mathbf{x}), h(\mathbf{y})) & =\bar{\rho}\left(\left(a_{n} x_{n}+b_{n}\right)_{n \in \mathbb{N}},\left(a_{n} y_{n}+b_{n}\right)_{n \in \mathbb{N}}\right) \\
& =\sup _{n \in \mathbb{N}} \bar{d}\left(a_{n} x_{n}+b_{n}, a_{n} y_{n}+b_{n}\right) \\
& \leq \sup _{n \in \mathbb{N}}\left|a_{n} x_{n}+b_{n}-\left(a_{n} y_{n}+b_{n}\right)\right| \\
& =\sup _{n \in \mathbb{N}} a_{n}\left|x_{n}-y_{n}\right| \\
& \leq A \sup _{n \in \mathbb{N}}\left|x_{n}-y_{n}\right| \\
& =A \sup _{n \in \mathbb{N}} \bar{d}\left(x_{n}, y_{n}\right) \\
& =A \bar{\rho}(\mathbf{x}, \mathbf{y})<A \delta<\epsilon
\end{aligned}
$$

Thus h is continuous.
We will argue the converse by contrapositive. Suppose $\left(a_{n}\right)_{n \in \mathbb{N}}$ is not bounded. Let $\mathbf{0}$ be the sequence of all zeros and let $\epsilon=1$. For any $\delta>0$ let \mathbf{y} be the constant sequence $\left(\frac{\delta}{2}, \frac{\delta}{2}, \ldots\right)$. Then

$$
\bar{\rho}(\mathbf{0}, \mathbf{y})=\sup _{n \in \mathbb{N}} \bar{d}\left(0, \frac{\delta}{2}\right) \leq \frac{\delta}{2}<\delta
$$

however,

$$
\bar{\rho}(h(\mathbf{0}), h(\mathbf{y}))=\sup _{n \in \mathbb{N}} \bar{d}\left(0+b_{n}, a_{n} \frac{\delta}{2}+b_{n}\right)=\sup _{n \in \mathbb{N}}\left(\min \left\{a_{n} \frac{\delta}{2}, 1\right\}\right) .
$$

Since $\left(a_{n}\right)_{n \in \mathbb{N}}$ is unbounded, there exists $n \in \mathbb{N}$ so that $a_{n} \frac{\delta}{2} \geq 1$ and consequently $\bar{\rho}(h(\mathbf{0}), h(\mathbf{y})) \geq$ $1=\epsilon$. This shows h is not continuous at $\mathbf{0}$.
(d) Consider $\mathbf{y} \in \mathbb{R}^{\mathbb{N}}$ defined by $y_{n}:=x_{n}+\left(1-\frac{1}{n}\right) \epsilon$. Then $y_{n} \in\left(x_{n}, x_{n}+\epsilon\right)$ for all $n \in \mathbb{N}$ and thus $\mathbf{y} \in U$. We will prove that U is not open by showing $B_{\bar{\rho}}(\mathbf{y}, \delta)$ fails to be contained in U for any $\delta>0$. Let $\delta>0$. Let $N \in \mathbb{N}$ satisfying $N>\frac{\epsilon}{\delta}$. Note that this implies $\frac{1}{N} \epsilon<\delta$. Let $\mathbf{z} \in \mathbb{R}^{\mathbb{N}}$ be defined by $z_{n}:=y_{n}+\frac{1}{N} \epsilon$ so that

$$
\bar{\rho}(\mathbf{z}, \mathbf{y}) \leq \sup _{n \in \mathbb{N}}\left|z_{n}-y_{n}\right|=\sup _{n \in \mathbb{N}} \frac{1}{N} \epsilon=\frac{1}{N} \epsilon<\delta .
$$

Thus $\mathbf{z} \in B_{\bar{\rho}}(\mathbf{y}, \delta)$. However, $\mathbf{z} \notin U$. Indeed, we have

$$
z_{N}=y_{N}+\frac{1}{N} \epsilon=x_{N}+\left(1-\frac{1}{N}\right) \epsilon+\frac{1}{N} \epsilon=x_{N}+\epsilon \notin\left(x_{N}-\epsilon, x_{N}+\epsilon\right)
$$

Thus $B_{\bar{\rho}}(\mathbf{y}, \delta)$ is not contained in U. Since $\delta>0$ was arbitrary, this shows U is not open in the topology induced by $\bar{\rho}$.
3. We will use the $\epsilon-\delta$ definition of continuity for metric spaces (where here we let \mathbb{R} have the standard metric). Let $\epsilon>0$. We claim that for $\delta=\epsilon$, if $x, y \in X$ satisfy $d(x, y)<\delta$ then $|f(x)-f(y)|<\epsilon$. Indeed, using Exercise 1 we have

$$
|f(x)-f(y)|=\left|d\left(x, x_{0}\right)-d\left(y, x_{0}\right)\right|=\left|d\left(x, x_{0}\right)-d\left(x_{0}, y\right)\right| \leq d(x, y)<\delta=\epsilon
$$

Thus f is continuous.
4. (a) Suppose $\left(x_{i}\right)_{i \in I}$ converges to x_{0}. Exercise 3, the function $x \mapsto d\left(x, x_{0}\right)$ is continuous and we know from lecture that continuous functions send convergent nets to convergent nets. Thus $\left(d\left(x_{i}, x_{0}\right)\right)_{i \in I}$ converges to $d\left(x_{0}, x_{0}\right)=0$.
Conversely, suppose $\left(d\left(x_{i}, x_{0}\right)\right)_{i \in I}$ converges to zero. Let U be a neighborhood of x_{0}. Then there exists $\epsilon>0$ so that $B_{d}\left(x_{0}, \epsilon\right) \subset U$. Since $(-\epsilon, \epsilon)$ is a neighborhood of zero, there exists $i_{0} \in I$ so that $i \geq i_{0}$ implies $d\left(x_{i}, x_{0}\right) \in(-\epsilon, \epsilon)$. In particular, $d\left(x_{i}, x_{0}\right)<\epsilon$ for all $i \geq i_{0}$ and therefore $x_{i} \in B_{d}\left(x_{0}, \epsilon\right) \subset U$. That is, for all $i \geq i_{0}$ we have $x_{i} \in U$.
(b) For each $n \in \mathbb{N}$ the ball $B_{d}\left(x_{0}, \frac{1}{n}\right)$ is a neighborhood of x_{0}. So the convergence of the net implies there exists $i_{n} \in I$ so that $i \geq i_{n}$ implies $x_{i} \in B_{d}\left(x_{0}, \frac{1}{n}\right)$. Define $x_{n}:=x_{i_{n}}$. Then

$$
d\left(x_{n}, x_{0}\right)<\frac{1}{n}
$$

for all $n \in \mathbb{N}$. Thus $\left(d\left(x_{n}, x_{0}\right)\right)_{n \in \mathbb{N}}$ converges to zero and so by part (a) the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges to x_{0}.
5. We first show pointwise convergence. Fix $x \in \mathbb{R}$ and let $0<\epsilon<1$. Let $N \in \mathbb{N}$ satisfy $N>$ $|x|+\left(\frac{1}{\epsilon}-1\right)^{1 / 2}$. Then by the reverse triangle in equality we have for any $n \geq N$

$$
|n-x| \geq|n-|x|| \geq n-|x|>\left(\frac{1}{\epsilon}-1\right)^{1 / 2}
$$

Squaring both sides yields $(x-n)^{2}>\frac{1}{\epsilon}-1$. Adding one to each side and taking reciprocals then yields $f_{n}(x)<\epsilon$. Since $f_{n}(x) \geq 0$, it follows that for all $n \geq N$ we have $\left|f_{n}(x)\right|<\epsilon$. Thus $\left(f_{n}(x)\right)_{n \in \mathbb{N}}$ converges to zero. Since $x \in \mathbb{R}$ was arbitrary, we see that $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges pointwise to zero.
Next we show the sequence of functions does not converge uniformly to zero. Consider $\epsilon=1$. Then for any $n \in \mathbb{N}$ we have for $x=n$ that

$$
\left|f_{n}(n)-0\right|=|1-0|=1 \geq \epsilon
$$

Hence $\left(f_{n}\right)_{n \in \mathbb{N}}$ does not converge uniformly to zero.
6. (a) Observe that for $N \in \mathbb{N}$ we have $\sum_{n=1}^{N}\left(c x_{n}\right)^{2}=c^{2} \sum_{n=1}^{N} x_{n}^{2}$. Thus

$$
\|c \mathbf{x}\|_{2}=\left(c^{2} \sum_{n=1}^{\infty} x_{n}^{2}\right)^{1 / 2}=|c|\left(\sum_{n=1}^{\infty} x_{n}^{2}\right)^{1 / 2}=|c|\|\mathbf{x}\|_{2}
$$

(b) For each $N \in \mathbb{N}$, we have by Exercise 6.(c) on Homework 7 (with $p=q=2 \mathrm{t}$)

$$
\sum_{n=1}^{N}\left|x_{n} y_{n}\right| \leq\left(\sum_{n=1}^{N} x_{n}^{2}\right)^{1 / 2}\left(\sum_{n=1}^{N} y_{n}^{2}\right)^{1 / 2} \leq\|\mathbf{x}\|_{2}\|\mathbf{y}\|_{2}
$$

Since this holds for all $N \in \mathbb{N}$, it follows that the series $\sum_{n=1}^{\infty}\left|x_{n} y_{n}\right|$ converges with the claimed bound.
(c) Using the previous part, for each $N \in \mathbb{N}$ we have

$$
\begin{aligned}
\sum_{n=1}^{N}\left(x_{n}+y_{n}\right)^{2} & =\sum_{n=1}^{N} x_{n}^{2}+2 x_{n} y_{n}+y_{n}^{2} \\
& \leq\|\mathbf{x}\|_{2}^{2}+2 \sum_{n=1}^{N}\left|x_{n} y_{n}\right|+\|\mathbf{y}\|_{2}^{2} \\
& \leq\|\mathbf{x}\|_{2}^{2}+2\|\mathbf{x}\|_{2}\|\mathbf{y}\|_{2}+\|\mathbf{y}\|_{2}^{2}=\left(\|\mathbf{x}\|_{2}+\|\mathbf{y}\|_{2}\right)^{2}
\end{aligned}
$$

Since this holds for all $N \in \mathbb{N}$, the series $\sum_{n=1}^{\infty}\left(x_{n}+y_{n}\right)^{2}$ converges. Moreover, the above computation also implies $\|\mathbf{x}+\mathbf{y}\|_{2} \leq\|\mathbf{x}\|_{2}+\|\mathbf{y}\|_{2}$.
(d) Note that d_{2} is defined for all pairs $\mathbf{x}, \mathbf{y} \in \ell^{2}$ because $-\mathbf{y} \in \ell^{2}$ by part (a) and $\mathbf{x}-\mathbf{y}=\mathbf{x}+(-\mathbf{y}) \in \ell^{2}$ by part (c). Now, The first two conditions in the definition of a metric are clear, and the triangle inequality follows from applying the previous part to $\mathbf{x}-\mathbf{z}=(\mathbf{x}-\mathbf{y})+(\mathbf{y}-\mathbf{z})$.
(e) Observe that for $\mathbf{x}, \mathbf{y} \in \ell^{2}$ and each $n \in \mathbb{N}$ we have

$$
\bar{d}\left(x_{n}, y_{n}\right) \leq\left|x_{n}-y_{n}\right|=\left(\left(x_{n}-y_{n}\right)^{2}\right)^{1 / 2} \leq\left(\sum_{n=1}^{\infty}\left(x_{n}-y_{n}\right)^{2}\right)^{1 / 2}=d_{2}(\mathbf{x}, \mathbf{y})
$$

Taking a supremum over $n \in \mathbb{N}$ on the left yields $\bar{\rho}(\mathbf{x}, \mathbf{y}) \leq d_{2}(\mathbf{x}, \mathbf{y})$. It follows that for all $\epsilon>0$ one has $B_{d_{2}}(\mathbf{x}, \epsilon) \subset B_{\bar{\rho}}(\mathbf{x}, \epsilon)$. Thus a lemma from lecture implies the topology induced by d_{2} is finer than the topology induced by $\bar{\rho}$ (i.e. the uniform topology).
Next, let $\mathbf{x} \in \ell^{2}$ and $\epsilon>0$. Recall that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges. Denote

$$
\delta:=\frac{\epsilon}{\left(\sum_{n=1}^{\infty} \frac{1}{n^{2}}\right)^{1 / 2}}
$$

Consider $U:=\prod_{n \in \mathbb{N}}\left(x_{n}-\frac{\delta}{n}, x_{n}+\frac{\delta}{n}\right)$, which is a neighborhood of \mathbf{x} in the box topology. We claim that $U \cap \ell^{2} \subset B_{d_{2}}(\mathbf{x}, \epsilon)$. Indeed, for $\mathbf{y} \in U \cap \ell^{2}$ we have

$$
d_{2}(\mathbf{x}, \mathbf{y})=\left(\sum_{n=1}^{\infty}\left(x_{n}-y_{n}\right)^{2}\right)^{1 / 2}<\left(\sum_{n=1}^{\infty} \frac{\delta^{2}}{n^{2}}\right)^{1 / 2}=\delta\left(\sum_{n=1}^{\infty} \frac{1}{n^{2}}\right)^{1 / 2}=\epsilon
$$

Thus $\mathbf{y} \in B_{d_{2}}(\mathbf{x}, \epsilon)$. Since sets of the form $U \cap \ell^{2}$ are part of a basis for the box topology on ℓ^{2}, this shows that the topology induced by d_{2} is coarser than the box topology.

