
Math 461 Homework 6 Solutions 10/16/2020

Exercises:
§18, 19

1. Let A,B,C,D be topological spaces and suppose f : A→ B and g : C → D are continuous functions.
Define a function f × g : A× C → B ×D by

(f × g)(a, c) = ((f(a), g(c)).

Show that f × g is continuous when A× C and B ×D are given the product topologies.

2. Let R and R2 have their standard topologies.

(a) Show that the function f : R2 → R defined by f(x, y) = xy is continuous.

(b) For each n ∈ N, show that p : R→ R defined by p(x) = xn is continuous.

3. Let X be a topological space and let Y be set with order relation < and the order topology. Suppose
f, g : X → Y are continuous.

(a) Show that the set {x ∈ X | f(x) ≤ g(x)} is closed in X.

(b) Show that the function h : X → Y defined by h(x) := min{f(x), g(x)} is continuous. [Hint: using
the pasting lemma.]

4. Let R have the standard topology. Consider

C = {(xn)n∈N ∈ RN | xn 6= 0 for only finitely many n ∈ N}.

That is, C is the set of sequences that are eventually equal to zero.

(a) Determine C when RN has the box topology.

(b) Determine C when RN has the product topology.

5. Let {Xj | j ∈ J} be an indexed family of topological spaces. Let (xi)i∈I ⊂
∏
j∈J Xj be a net; that is,

for each i in the directed set I, xi ∈
∏
j∈J Xj is a J-tuple.

(a) Equip
∏
j∈J Xj with the product topology and show that the net (xi)i∈I converges to some

x ∈
∏
j∈J Xj if and only if for every j ∈ J the net (πj(xi))i∈I converges to πj(x) in Xj .

(b) Equip
∏
j∈J Xj with the box topology and prove one of the directions in the previous part is true

and show the other is false by finding a counterexample in RN.

6*. Let R have the standard topology and consider the functions f, g : R→ R defined by

f(x) =

{
1 x ∈ Q
0 x ∈ R \Q

,

and

g(x) =

{
1
m x ∈ Q with x = n

m for n ∈ Z and m ∈ N sharing no common factors

0 x ∈ R \Q
.

(a) Show that Q and R \Q are dense in R.

(b) Show that f is not continuous at any x ∈ R.

(c) Show that g is not continuous at any x ∈ Q.

(d) Show that g is continuous at every x ∈ R \Q.

———————————————————————————————————————————–
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1. Recall that B := {U × V | U ⊂ B, V ⊂ Dopen} is a basis for the product topology on B ×D. So by
a proposition from lecture it suffices to show (f × g)−1(U × V ) is open for all U × V ∈ B. Observe
that (f × g)(a, c) ∈ U × V if and only if f(a) ∈ U and g(c) ∈ V , which is in turn equivalent to
(a, c) ∈ f−1(U)× g−1(V ). Thus

(f × g)−1(U, V ) = f−1(U)× g−1(V ).

Since f and g are both continuous, we know f−1(U) ⊂ A and g−1(V ) ⊂ C are open. Thus the above
set is open in A× C under the product topology, and therefore f × g is continuous. �

2. (a) We will check continuity at each point. Fix (x0, y0) ∈ R2 and let V be a neighborhood of
f(x0, y0) = x0y0. We must find a neighborhood U of (x0, y0) satisfying f(U) ⊂ V . By Exercise 1
on Homework 3 there exists ε > 0 so that (x0y0 − ε, x0y0 + ε). Observe that for (x, y) ∈ R2 we
have

|f(x, y)− f(x0, y0)| = |xy − x0y0|
= |xy − xy0 + xy0 − x0y0|
≤ |x||y − y0|+ |x− x0||y0|
= |x− x0 + x0||y − y0|+ |x− x0||y0|
≤ (|x− x0|+ |x0|)|y − y0|+ |x− x0||y0|.

Thus if we let δ := min{ ε
2(1+|x0|+|y0|) , 1} then for

(x, y) ∈ U := (x0 − δ, x0 + δ)× (y0 − δ, y0 + δ)

the above estimates show

|f(x, y)− f(x0, y0)| ≤ (δ + |x0|)δ + δ|y0| ≤ (1 + |x0|)δ + δ|y0| <
ε

2
+
ε

2
= ε.

Thus f(x, y) ∈ V and so f(U) ⊂ V as needed. Since (x0, y0) ∈ R2 was arbitrary, we see that f is
continuous. �

(b) We will proceed by induction on n, but first need another function. Consider g : R→ R2 defined
by g(x) = (x, x). Then for open sets U, V ⊂ R one has g(x) ∈ U × V if and only if x ∈ U ∩ V .
Thus g−1(U × V ) = U ∩ V which is open. Since such products form a basis for the topology on
R2, we see that g is continuous.

Now, for n = 2, we have p(x) = f ◦ g. Since f is continuous by part (a), we see that p is
a composition of continuous functions and is therefore continuous. Suppose q(x) = xn−1 is
continuous. Then p = f ◦ (q × i) ◦ g where i(x) = x is the identity function. Since q and i are
continuous, so is q × i by the Exercise 1. Thus p is continuous as the composition of continuous
functions. �

3. (a) Denote the set in question by A. We will show A is closed by showing its complement is open. If
x ∈ X \A then we must have f(x) > g(x). We will find an open set satisfying x ∈ Ux ⊂ X \A. If
the open interval (g(x), f(x)) is nonempty, let y ∈ (g(x), f(x)) and consider Ux := g−1((−∞, y))∩
f−1((y,+∞)). Then Ux is open by the continuity of f and g and it clearly contains x. Also, if
x′ ∈ Ux then we have g(x′) < y and f(x′) > y so that g(x′) < f(x′) by transitivity of the order.
Consequently, x′ ∈ X \A and so Ux ⊂ X \A. If, on the other hand, the open interval (g(x), f(x))
is empty, then let Ux := g−1((−∞, f(x)) ∩ f−1((g(x),∞)). This is again open by the continuity
of f and g and it contains x. Also if x′ ∈ Ux, then g(x′) < f(x) and f(x′) > g(x). If we had
f(x′) ≤ g(x′) then it would follow that g(x) < f(x′) < f(x), contradicting (g(x), f(x)) = ∅. Thus
we must have f(x′) > g(x′), which means x′ ∈ X \ A and Ux ⊂ X \ A. Thus in either case, we
have found our desired open set and so

X \A =
⋃

x∈X\A

Ux

is open as a union of open sets. �
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(b) Let A := {x ∈ X | f(x) ≤ g(x)} and B := {x ∈ X | g(x) ≤ f(x)}. Then these are closed subsets
of X by the previous part (where we simply swap the roles of f and g for B), and moreover there
union is X: for all x ∈ X we must have either f(x) < g(x), f(x) = g(x), or f(x) > g(x) and
so A contains all those x satisfying the first two while B contains all those x satisfying the last
two. Observe that for x ∈ A we have h(x) = f(x), and for x ∈ B we have h(x) = g(x). Thus
h |A= f and h |B= g, which are continuous by assumption. Also note that for x ∈ A∩B we have
f(x) ≤ g(x) and g(x) ≤ f(x) which implies f(x) = g(x). Thus f |A∩B≡|A∩B and so the pasting
lemma implies h is continuous. �

4. (a) We claim that C is closed and hence equals its own closure. We will show RN \ C is open. Let
x = (xn)n∈N ∈ RN \C. Consider A := {n ∈ N | xn 6= 0}, which is infinite by virtue of x 6∈ C. For
n ∈ A, define Un := (xn − |xn|, xn + |xn|) and note that 0 6∈ Un. For n ∈ N \ A, define Un := R.
Then then product

U :=
∏
n∈N

Un

is a neighborhood of x in the box topology, but we claim it is disjoint from C. Indeed, for any
y = (yn)n∈N ∈ C we have yn 6= 0 for each n ∈ A. Since A is infinite, we see that y 6∈ C. We
have shown that every element of RN \C has a neighborhood entirely contained in this set. Hence
RN \ C is open and therefore C is closed. �

(b) We claim that C = RN. It suffices to show for any x = (xn)n∈N ∈ RN, all of its neighborhoods
intersect C. Let U be a neighborhood of x. Then there exists a sequence of open sets Un ⊂ R
with Un = R for all but finitely many n ∈ N satisfying

x ∈
∏
n∈N

Un ⊂ U

(this is because such sets form a basis for the product topology). Consider the finite set A :=
{n ∈ N : Un 6= R}, and define y = (yn)n∈N ∈ RN by

yn :=

{
xn if n ∈ A
0 otherwise

.

Since A is finite, we have y ∈ C and moreover y ∈
∏
Un ⊂ U . Thus U ∩ C 6= ∅ and so x ∈ C.

Since x ∈ RN was arbitrary, we see that C = RN as claimed. �

5. (a) (=⇒): Recall that we showed continuous functions map convergent nets to convergent nets. Since
the coordinate projections πj are continuous for each j ∈ J , it follows that (πj(xi))i∈I converges
to πj(x).

(⇐=): Let U be a neighborhood of x. Then there exists an indexed collection of open sets
{Uj ⊂ Xj | j ∈ J} such that Uj = Xj for all but finitely many j ∈ J satisfying

x ∈
∏
j∈J

Uj ⊂ U.

Thus Uj is a neighborhood for πj(x) for each j ∈ J . Let J0 := {j ∈ J | Uj ( Xj}. For each j ∈ J0,
there exists ij ∈ I so that for i ≥ ij one has πj(xi) ∈ Uj . Using the upper bound property of the
directed set I (and induction), there exists i0 ∈ I so that ij ≤ i0 for all j ∈ J0 (this very much
uses that J0 is finite). Thus for i ≥ i0, we have πj(xi) ∈ Uj for all j ∈ J0 since i ≥ i0 ≥ ij . For
j 6∈ J0, we also have πj(xi) ∈ Uj for i ≥ i0 simply because Uj = Xj in this case. Consequently,
for i ≥ i0 we have

xi ∈
∏
j∈J

Uj ⊂ U.

Thus the net (xi)i∈I converges to x. �
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(b) The “=⇒” direction in the previous part is still true in the box topology: this topology is finer
than the product topology which implies the coordinate projections are still continuous in this
case and hence the same proof works. The other direction is false as the following counterexample
demonstrates.

Consider
x = (1, 1, 1, . . .) ∈ RN

and let xn ∈ RN be the sequence whose first n entries are 1 and the rest are zero. For each m ∈ N,
we have

πm(xn) =

{
1 if m ≤ n
0 otherwise

.

Thus for all m ∈ N we have
lim
n→∞

πm(xn) = 1 = πm(x).

However, (xn)n∈N belongs to the set C from Exercise 4, while x 6∈ C. We showed in 4.(a) that C
is closed and thus this net cannot converge to a point outside of it. So (xn)n∈N does not converge
to x. �

6. (a) Let x ∈ R and let U be a neighborhood of x. We must show U intersects Q and R \ Q. Recall
that there exists ε > 0 so that (x − ε, x + ε) ⊂ U . By Exercise 6*.(c) on Homework 3, there
exists z ∈ Q with x − ε < z < x + ε, and thus z ∈ U . We also know there exists a w ∈ Q with
x − ε −

√
2 < w < x + ε −

√
2 and therefore x − ε < w +

√
2 < x + ε. So w +

√
2 ∈ U and we

claim w ∈ R \ Q. Indeed, otherwise w +
√

2 = q ∈ Q and hence
√

2 = q − w ∈ Q, contradicting√
2 being irrational. Thus U also intersects R \Q. �

(b) Fix x ∈ R. If x ∈ Q, then V := ( 1
2 ,

3
2 ) is a neigbhorhood of f(x) = 1. We claim there is no

neighborhood U of x satisfying f(U) ⊂ V . Indeed, since R \ Q is dense we know there always
exists y ∈ U ∩ R \Q, and thus f(y) = 0 6∈ V . If x ∈ R \Q, then using V := (− 1

2 ,
1
2 ), we can use

the density of Q to find y ∈ Q∩U for any neighborhood U of x and f(y) = 1 6∈ V . Thus in either
case f fails to be continuous at x ∈ R. �

(c) Fix x ∈ Q, and suppose x = n
m for n ∈ Z and m ∈ N sharing no common factors. Thus V := (0, 2

m )
is a neighborhood of g(x) = 1

m . However, any neighborhood U of x contains some y ∈ R \Q (by
the density of the irrationals), and thus g(y) = 0 6∈ V . Therefore g is not continuous at x. �

(d) Fix x ∈ R \Q. We will show g satisfies the ε− δ definition of continuity. Let ε > 0. Let M ∈ N
satisfy M ≥ 1

ε . Note that for m ∈ {1, . . . ,M}, there are only finitely many n ∈ Z satisfying
n
m ∈ [x − 1, x + 1] (since this requires m(x − 1) ≤ n ≤ m(x + 1)). Thus the following is a finite
set:

F :=
{ n
m
∈ [x− 1, x+ 1] | 1 ≤ m ≤M, n ∈ Z

}
.

Since F ⊂ Q, we know x 6∈ F and therefore

δ := min
y∈F
|x− y| > 0.

We first claim δ < 1. Indeed, by Exercise 6*.(a) on Homework 3, there exists n ∈ Z with
n ≤ x < n + 1. Thus x − 1 < n and n + 1 ≤ x + 1, which means n, n + 1 ∈ F , and therefore
δ ≤ |x− n| = x− n < 1.

Now, we claim that if y ∈ R satisfies |x−y| < δ, then |g(x)−g(y)| < ε. Since g(x) = 0, if y ∈ R\Q
then |g(x)− g(y)| = |0− 0| = 0 < ε. So now assume y ∈ Q, and say y = n

m for n ∈ Z and m ∈ N
with no common factors. If m > M , then we have

|g(x)− g(y)| = |0− 1

m
| = 1

m
<

1

M
≤ ε,

as needed. If m ≤ M , then since δ < 1 we have y ∈ [x − 1, x + 1] and hence y ∈ F . But then
|x− y| < δ ≤ |x− y| is a contradiction. Thus we cannot have m ≤M and so in all cases we have
have show |g(x)− g(y)| < ε. �
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